
�School of Applied Science, Nan Yang Technological University, Nan Yang Avenue, Singapore

2263.

�

To get high performance on a distributed-memory multicomputer at present

and for the foreseeable future, some explicit control is needed. This paper

describes work aimed at harnessing the power of the functional notation in

exercising such control. We have developed a declarative annotation scheme

which allows explicit control over process placement and communications. The

language, called Caliban, has been implemented on a con�gurable, loosely-

coupled commercial multicomputer and we describe the compiler and run-time

system.

Abstract

Department of Computing, Imperial College, London SW7 2BZ, UK

Tel: +44 71 589 5111 x5028, Fax: +44 71 581 8024

email:

functional programming, process network, declarative annotation,

transputer, program transformation

Functional languages have long been the subject of research into automatic par-
allelisation, because of transparent data dependency, and the freedom with which
evaluation order can be changed while retaining determinacy. This work has achieved
some success, exempli�ed most notably by Goldberg's Buckwheat implementation
[Gol88]. Attempts to do the same using distributed memory hardware have proven

1

Keywords:

phjk@doc.ic.ac.uk

Stuart Cox

Shell-Ying Huang

Paul Kelly

Junxian Liu

Frank Taylor

Introduction

An Implementation of Static Functional

Process Networks

less successful, being very sensitive to locality properties which are very hard to
evaluate at compile time. This experience is shared by researchers parallelising im-
perative languages (see for example [ZC90]).

Meanwhile, the functional approach has very powerful abstraction mechanisms, in
particular (see Hughes [Hug84]) streams and higher-order functions. These provide
substantial leverage on software engineering problems in general. Our objective is
to harness this power to the special software engineering problems of distributed
memory parallel programming.

In an earlier work [Kel89, chapter 5], a system of annotations was introduced to
enable the programmer to control some aspects of a program's execution on a dis-
tributed memory machine. The language retains some abstraction: prescription is
in terms of a \process network" showing processes evaluating named expressions,
linked by arcs showing where communication occurs. The network is described by
a declarative annotation of its structure. Furthermore, the host functional language
can itself be used to generate the annotation. Functions which do this can be thought
of as \network forming operators", which capture a communications , and
are parameterised by the size and shape needed for a particular application.

This paper describes our attempt at implementing the language. We con�ne our
attention to programs whose process network is independent of run-time parameters
(but can be con�gured at compile-time). This enables us to perform optimised
placement of processes in the distributed-memory machine, and eliminates dynamic
creation of communications channels.

Section 1 introduces the annotation language and gives a small example of its use.
Section 2 discusses our implementation and it's limitations. Sections 3 to 6 describe
each of the phases of the compiler and run-time system.

Caliban is an annotation language which can be built on top of many di�erent lan-
guages. The implementation described here is based on a version of Haskell [HWe90]
which is being developed at Imperial College in collaboration with Southampton
University. We are implementing a simpli�ed version of the annotation language
presented in [Kel89, Chapter 5].

To start with, we present a quick tour of the Caliban annotation language.

In a process network, processes (nodes) are connected by streams of data (arcs).

Streams are head-strict lazy lists. This ensures that only normal form values
are ever sent between nodes. We use the standard list constructors because in
our experience providing a special set of stream constructors is obtrusive.

�

�

pattern

1.1 Introduction

1 Caliban

1 2

2 3

1 2

1 2

1 2

1 2 1 2

Streams are all of type . is de�ned as:

Using a clause we can partition the program into separate node
expressions, each to be evaluated in parallel on separate PEs. e.g.

Using data dependency analysis we can determine the need for communication
between two nodes. In the previous code we see that uses and therefore
a connection would have to be set up between and .

We can add some structure to the annotation by explicitly documenting which
nodes communicate (in either direction) with which others. This is done by
adding annotations. e.g.

These are only used for consistency checking. The compiler can derive all the
information it needs from just the annotations.

Each process can now be evaluated eagerly by it's PE. This can continue until
an inter-processor data dependency causes blocking or the output bu�er space
of the PE is �lled.

We illustrate this approach with a brief example. Suppose we have a database of
records, and a stream of incoming queries. We need to look each query up in the
database, and produce as output the stream of corresponding records.

As a speci�cation, here is the sequential formulation:

We assume the existence of a database inquiry function which �nds the record
corresponding to a single key, or returns .

As a simple example of a parallel search implementation, we will subdivide the
database into several equal-sized parts, and search for each key in the sub-databases
using the original sequential algorithm. Figure 1 shows the process network, with
each node labelled with the expression it returns.

This computation is speci�ed by the following de�nition, where is the parallel
version, and is the sequential version used to search the sub-databases:

: : : : : :

: : : : : :

�

j j j

�

�

�

�

moreover

moreover

where

[Message] Message

data Message = INT Int CHAR Char FLOAT Float BOOL Bool

e = f e

e = f e

Node e And Node e

e e
e e

Arc Node e And Node e And Arc e e

Node

search keys db = map (match db) keys

match
FAILURE

search'
search

search' keys db = merge splitresults

splitresults = map (search keys) (split N db)

1.2 Example: parallel search

1

2

3

1 2 3

1 2 3

1 1

2 2

3 3

1 1

2 2

3 3

search keys db

search keys db

search keys db

merge splitresults keys

Figure 1: Process network for parallel search implementation

where divides the database into equal-sized partitions, and selects
a successful match, if possible, from each set of replies.

The next step is to add a clause, to specify how the computation is to
be distributed. This is straightforward if we know so that the elements of the list

can be given names. For example, if , as illustrated in Figure 1,
then we can write:

This is somewhat long-winded, and changing is very hard work. We can make life
very much easier by de�ning a function to construct the required annotation. This
ordinary function de�nition de�nes a \network forming operator" (\NFO"), which
abstracts the pattern we want:

If we give this function our list of processes, it will construct the combination of

1.2.1 Expressing the parallelism

moreover

where

moreover

split N db N merge
N

N
splitresults N = 3

search' keys db

= replies

replies = merge [splitresult , splitresult , splitresult]

[splitresult , splitresult , splitresult] = splitresults

splitresults = map (search keys) (split 3 db)

Node splitresult And Arc replies splitresult And

Node splitresult And Arc replies splitresult And

Node splitresult And Arc replies splitresult And Node replies And

Node splitresult And Arc keys splitresult And

Node splitresult And Arc keys splitresult And

Node splitresult And Arc keys splitresult And Node keys

N

fan a [] = Node a

fan a (b : bs) = Node b And Arc a b And fan a bs

Arc

�

� �

�
�
�	

@
@I

� �

1 2 3

and assertions we need. e.g.

To write the parameterised version of we need to use twice | once for
the fan-out to the sub-databases, and then again to route the replies to the
computation:

This example illustrates how a function like captures a family of parallel compu-
tation structures, leading to a concise explanation of how the computation is mapped
onto the underlying hardware.

It also demonstrates that some care is needed with the naming of expressions: the
name labels the process which performs the computation. Although
slightly counter-intuitive, it is necessary to identify a process by the it computes
rather than the it performs to avoid ambiguity.

In the general case, a clause can decorate any expression in the program,
so the process network's development can be inextricably intertwined with execution
of the program. The aim of the Caliban approach is to allow the programmer to
collect the annotations controlling a parallel computation into a single declarative
description, to aid the human reader and to provide the implementation with the
opportunity to make scheduling decisions based on the needs of the computation as
a whole rather than having to allocate each process as it is created.

In the static implementation described here, we examine the extreme case where the
entire process network can be elaborated at compile time. This illuminates some
of the problems a more ambitious implementation would have to deal with. It also
makes it easy to use the best possible embedding of the required process network in
the available processor network.

The implementation described here imposes quite severe restrictions on the form of
programs that can be accepted:

There can be only one clause, although it need not necessarily
appear at the outermost level of the program.

�

value
function

where

moreover

moreover

moreover

Node

fan replies [splitresult , splitresult , splitresult]

search' fan
merge

search' keys db = replies

replies = merge splitresults

splitresults = map (search keys) (split N db)

fan replies splitresults And fan keys splitresults

fan

replies merge

2.1 Limitations of the implementation

2 Implementation

1 2

1 2

1 1

2 2

1 1

2 2

k i j

i

The process network described by the must be compile-time static.

Each PE has just one outgoing stream, which may be sent to several other
PEs.

This is a consequence of the type restriction on the operator above. It
has the very desirable e�ect that each PE has only one reduction process:
evaluation of two or more output streams would have to be interleaved fairly
to respect the desired semantics.

In the following sections we describe each phase of the full compiler.

In essence the simpli�er's responsibility is to evaluate the annotation, and reduce it
to an annotation of the form

where the are the processes to be placed on each PE. We will refer to this as
.

In particular, an annotation in which a network forming operator is applied to an
expression must be reduced until it has the above form. This will normally involve
rewriting the argument | but other references to will probably appear in the
body of the computation. When the simpli�er evaluates to expose a constructor
the other references to must be updated to refer to the updated value.

Consider the example given earlier:

Suppose we know that is 2 and that yields the two-element list .
The annotation evaluates to:

: : : : : :

�

�

annotation normal form

moreover

where

moreover

Node

Node e And Node e And And Node e And Arc e e And

e

f
e

e e
e

e

search

search' keys db = replies

replies = merge splitresults

splitresults = map (search keys) (split N db)

fan replies splitresults And fan keys splitresults

N split 2 db [db , db]

Node (search keys db) And Arc replies (search keys db) And

Node (search keys db) And Arc replies (search keys db) And Node replies And

Node (search keys db) And Arc keys (search keys db) And

Node (search keys db) And Arc keys (search keys db) And Node keys

3.1 Example

3 Simpli�er

+

During the partial evaluation we reduced to a two-element list, by un-
folding the application of . The problem is that the computational part of the
program still refers to .

This di�culty is frustrating since the objective seems straightforward: we wish the
annotation to refer to the expressions which appear in the computation. For-
tunately, the intuitive understanding of how expressions are generated and shared
in a functional language implementation has a tidy formal basis as graph rewriting.
Barendregt et al. [BvEG 87] show that term-graph rewriting is a correct implemen-
tation of term rewriting as required by our host functional language. Thus we can
use their theory to perform straightforward simpli�cation in the annotation, whilst
keeping precise track of how expressions are shared with the computation part of the
program. We inherit their correspondence theorem with the term-rewrite system,
and therefore can be assured that the simpli�cation process does not compromise
the correctness of the program's result.

The simpli�cation phase may fail to terminate even when the unannotated program
would terminate properly. The termination condition is, however, relatively simple
as it is independent of the sharing detail: the simpli�cation phase terminates pro-
vided ordinary evaluation of the annotation to annotation normal form terminates.

Compile-time simpli�cation may, of course, fail if parameters on which the anno-
tation's normal form depends are unavailable. This can sometimes happen in frus-
trating cases | as in our search example where the structure of may have to
be known at compile time for the superstructure of the list of sub-databases to be
available when constructing the annotation.

If we consider the same sequence of rewrite steps that were needed to reduce the
annotation above, and re-interpret the term rewriting as term-graph rewriting, the
computation graph is automatically updated to read as follows | where the
construct is used to label shared nodes:

will

where

splitresults
map

splitresults

db

3.2 Term-graph rewriting

3.3 Termination

3.4 Example revisited

1 2

1 1

2 2

1

2

1 1 2

2 1 1

2 2

The annotation also reects the sharing present:

Notice here that the elements of are the subject of the annotation, not
the list itself. Thus, the list construction operations \:" which build

are part of the process labelled .

The next phase is to take the program containing a normal form anno-
tation and replace the annotated block with an application of the special function

(described below). This gives an explicit representation of the process net-
work to be created at run-time.

takes two parameters: a list of functions representing processes and a wiring
list, and returns a function specifying the overall behaviour:

Each function in the list speci�es the input/output behaviour of a process: it takes
as input a list of streams of messages, and delivers a single stream of messages as
output (we actually return a singleton list of messages to accommodate multi-output
processes):

The wiring list contains an element for each communications channel required:

A connection indicates that output of process should be connected
to input of process . Processes are indexed from one. This allows for a pseudo
process, zero, that represents the rest of the world (which provides input to the
network and consumes its output).

! !

!

where

moreover

search' keys db = replies

replies = merge splitresults

splitresults = splitresult : splitresult : []

splitresult = search keys db

splitresult = search keys db

db = hd splitdbs

db = hd (tl splitdbs)

splitdbs = split 2 db

Node splitresult And Arc replies splitresult And Node splitresult And

Arc replies splitresult And Node splitresult And Arc keys splitresult And

Node splitresult And Arc keys splitresult And Node keys And Node replies

splitresults
splitresults

splitresults replies

procnet

Procnet

procnet :: [Process] [Connection] Process

type Process = [[Message]] [[Message]]

type Connection = ((Int, Int), (Int, Int))

((i,j),(m,n)) j i
n m

4.1 The functionprocnet

4 Network extraction

1 2

1 2 1 2

It is possible to specify as a functional program. For ease of exposition it
is simpler to say that it connects up outputs of processes to inputs of processes as
speci�ed by the wiring list.

The process of removing the is quite simple. We start by �nding a label
for each expression that is to become a separate process. The function
does this.

In the �nal network there will be one process for each of these named expressions.

The network extraction phase has to decide what is local to an expression and what
is imported from another process. We must abstract, to the top level of the process,
references to streams that are to be imported so that they can be provided at run-
time. This means that what (in the initial program) was a stream now becomes a
function, whose argument is a list of imported streams.

To decide what is imported we use the Process Placement Rule: A value is computed
locally by a process unless it has explicitly been placed elsewhere by name.

Thus the streams imported by a process are those which appear free in its node
expression, or in any expression referred to by it. If we treat the program as a
term graph and trace all the expression tree we can locate all references to imported
names and abstract them accordingly.

The extractor must walk the program graph as if it is a term graph, abstracting
references to imported streams. This is very closely related to lambda-lifting. In
our initial implementation we use only a simple abstraction scheme | we abstract
variables and not maximally free expressions so we do not end up with a program
that respects the laziness of the original.

When the program gets to the extractor it has been type checked and had pattern
matching removed. We implement the annotation as a form of identity function of
type \ ". We need to remove this and replace it by a call to

.

f g

;

[

! !

NodesOf

NodesOf

NodesOf

NodesOf NodesOf NodesOf

moreover

procnet

(Node e) = e

(Arc e e) =

(And annot annot) = annot annot

a Placement a
procnet

4.2 Translation to form

4.3 The process placement rule

4.4 The implementation of network extraction

procnet

Firstly we construct the set of exported names using . We then use a pair of
mutually recursive functions, and , to traverse the program graph.

takes an expression and returns an environment listing what has to be
imported into that expression. It calls to follow named references (so the
graph is treated as a term graph).

takes a name that references an expression and locates its de�nition. It
calls on the de�ning expression and then uses the environment returned to
form the expression into a function whose extra argument is a list of the streams
that must be imported.

If �nds a reference to an expression that has already been abstracted it can
replace it with an application of the new function version of the expression applied
to a list of arguments that represent the names that the function needs to import. It
then recursively calls itself on the newly built application to ensure that the newly
supplied arguments are imported into the calling expression.

All that is left to do is construct a list of functions (the abstracted versions of each
of the node expressions) and a list of connection tuples.

Process networks accommodate the stream based IO paradigm quite naturally. For
this reason we have deviated from Haskell's IO speci�cation and just provided a
basic stream presentation of IO. We use a pseudo process (numbered 0) to act as
the real world, supplying input and consuming output from the network. This is
the only part of the program that can exist o� the process network so we have to
ensure that all processing is carried out on the network.

We can do this by applying a small program transformation to the input program
before letting the network extractor loose. The result of this transformation is to
move any computation not covered by the annotation onto the network.

If the main program is the expression:

then the application of is not performed on the network. We can simply replace
the main expression by this:

Now all computation that is performed by the program is covered by the annotation.

NodesOf
rec run rec abstr

Rec run
rec abstr

Rec abstr
rec run

rec run

4.4.1 Network IO

moreover

where

where

main xs = f (res moreover Node res)

res = g xs

f

main xs = top moreover Node top And Node oldtop

top = f oldtop

oldtop = g xs

1 2

1 1

2 2

1

2

1 2 1 2

1 2 1 2

1 2

After the network extraction phase the parallel search example given earlier has the
following form:

takes the output of the �rst process, which applies the function , as
the computation's output. The computation's input stream is referred to in
the wiring list as output zero of process zero, and is routed as input to the two
sub-search processes which evaluate and respectively.

Because , the database to be searched, is not a run-time parameter of the com-
putation, it is built into the sub-search processes instead of being passed using a
communications channel.

Once simpli�cation has been completed we are left with a program that contains
nothing but standard Haskell code. This can be compiled using conventional com-
piler technology | with the advantage that we are not compromising the sequential
performance of the generated code by placing parallel synchronisation points in it.
For our compiler we are using a system under development by Glaser, Hartel and
Wild [GHW90] at Southampton University. This is an optimised sequential compiler
that produces instrumented C code as it's output.

The complete C code is compiled for PE using the appropriate native compiler.
Our target is a Meiko Computing Surface, containing 32 Inmos T800 transput-
ers. This is supported by a communications toolkit called \CSTools". It provides
machine independent communication and process management primitives. It also
allows the programmer to build static descriptions of process networks before the
surface is loaded. The surface is then loaded using a \ " call. The critical
restriction is that the network cannot be re-switched with reasonable expense once
the program has started.

each

where

cs build()

search' keys

= (procnet [replies', splitresult ', splitresult ']

[((0,0), (2,0)), ((0,0), (3,0)), ((2,0), (1,0)),

((3,0), (1,1)), ((1,0), (0,0))]) keys

splitresult ' [keys] = search keys db

splitresult ' [keys] = search keys db

db = hd splitdbs

db = hd (tl splitdbs)

splitdbs = split 2 db

replies' [splitresult , splitresult] = merge (splitresults' [splitresult , splitresult])

splitresults' [splitresult , splitresult] = splitresult : splitresult : []

Procnet replies'
keys

splitresult splitresult

db

4.5 Explicit process placement of examplesearch

5 Load-time system

This leaves us with one thing left to do: implement . To the compiler
looks like any other function.

is �rst called on the host. It takes a list of functions that represent the work
of each process and a wiring list describing how the processes are to be linked. It's
job is to set up the network to start computing. To do this it sets up a CSTools
description of the network, calls CSTools to load up the network, sends con�guration
information to each processor (the index of the function in the process list that that
processor is to compute) and then starts up the network.

Once it has done the initialisation it must supply the network with input and con-
sume it's output. This can be done in the same way as for a node in the network
(see section 6.2).

In the same way that is called �rst on the host, it is called �rst on each PE
(as all PEs run identical code). But the version of on the network nodes
is di�erent. It receives con�guration information from the host (its index into the
process list) and sets up transports between it and the nodes it must communicate
with. Once this is done it constructs a closure for each input transport that contains
the transport identi�er and a function (which is called to collect the
next input value). This function, when called, reads an item and
produces a cons cell whose head is the item just read and whose tail is the closure
(ready to read the next item).

Next sets up a suspension that forms the output of the node's computation
(i.e. the application of the processes function to the closures that represent the
input). The last step is to enter a loop that calls the sequential evaluator to compute
the next output element, send it to the output transports and repeat.

Now the network has been loaded and started we can look at how inter-processor
communication works.

We have to design the communication system to respect the semantics of the unan-
notated program. This means that the only time our parallel program should fail is
when the sequential one would have. Take the de�nition of the stream of Fibonacci

ReadListItem()
ReadListItem()

procnet procnet

Procnet

procnet
procnet

procnet

5.1 implementation on the host

5.2 implementation on the PEs

6.1 Semantic considerations, and deadlock

Procnet

Procnet

6 Run-time system

1

1

Although the semantic evaluation is identi�ed with non-termination, most implementations

can easily distinguish between deadlock and non-termination by noting that a needed expression

is already being evaluated.

numbers:

Notice that each element of the stream depends on the immediately preceeding ele-
ment, and the one before that. If we modify the de�nition slightly:

then each element after the �rst element depends on itself. In semantic terms, the
result is simply , but if the program is considered as a model of a network of
concurrent processes, then the e�ect models deadlock (see Wadge [Wad81]) .

In communication, our major concern is avoiding deadlock when the unannotated
program is de�ned. This point becomes particularly clear when we look at a node,
, whose output is sent to two nodes, and . We must ensure that does not

have to wait for to be ready to receive before itself can collect it's input value.
In terms of Kahn's original work on modelling concurrent processes functionally, we
need a non-blocking output with unbounded bu�ering [Kah74].

Keeping these semantic concerns in mind, we can discuss the mechanisms used for
communication in the system. In the general case a PE must communicate it's
output with other PEs, so it will have output transports. The PE must:

Evaluate a stream of messages one-by-one, and send them on the output trans-
ports.

Send values on each transport as soon as the value has been computed and
the transport is ready to receive.

In particular, the PE must not wait for transport to accept a value before
trying to send it to transports , etc.

To achieve this end we have non-preemtively scheduled concurrent processes, one
for each output transport. Initially, each has a pointer to the suspension representing
the node expression that all have to output. They then compete to evaluate the
output expression and send the results down their transports. This means that as
the output stream unfolds in the node's heap each of the output processes send more
of it down their transport. The output process that is currently ahead of the others
(in the evaluation) is the one that calls the evaluator. Bu�ering is therefore provided
naturally by the heap.

k k

i

j k

k

?

�

�

�

A B C B

C B

�bs = 1 : 1 : map2 (+) �bs (tl �bs)

�bs = 1 : map2 (+) �bs (tl �bs)

1 :

6.2 Stream output

The input side is more straightforward. The requirements are to translate incoming
messages into elements of the appropriate list and avoid unnecessary blocking of
senders. At the same time we should also avoid excessive bu�ering.

We have already seen how is used to pull the next input value over
the network (section 5.2). Unfortunately this simple scheme is ine�cient as all
the bu�ering happens at the source. A more sophisticated implementation would
attempt to bu�er at both ends and send several values at a time (to reduce network
latency overheads).

We employ the standard garbage collector used for the sequential implementation.
The only modi�cation is to extend the root set to include all the sender processes'
states. Thus, the collection time is not increased compared to the sequential case,
and furthermore each PE can perform collection at any convenient time indepen-
dently of the others. In particular, collection can proceed in parallel without coor-
dination.

The main achievement we claim is the development of a high-level notation to control
parallel program execution, which allows distributed memory multicomputers to
be used e�ciently, without compromising the performance of the host functional
language implementation in any respect.

We have described our �rst implementation of Caliban except for the simpli�cation
phase, which is under development. The compiler imposes quite severe restrictions
on the form of programs it can accept | static networks of processes, each with a
single output stream of a special type.

In the short term, we plan to implement the simpli�er, use a coercion mechanism to
avoid the need for the explicitly-tagged type, and allow for multiple distinct
output streams on each processor. This would be expressed using a new placement
annotation, , which requires a list of expressions to share the same PE; in
fact, is a limited instance of this more primitive mechanism:

Handling this adds signi�cant complexity to the run-time system, as the sender
processes must be able to enter the evaluator concurrently.

ReadListItem()

Message

Bundle
Node

Node a = Bundle [a];

6.3 Stream input

6.4 Garbage collection

Future work

Conclusion

+

Another addition we will make quite soon is a parallel implementation of , which
dynamically allocates free PEs in a self-scheduled fashion. This facility is absent from
the static implementation of Caliban we have described but is often useful. It can be
embedded within the existing Caliban system, and may be extended to allow nested
parallel operations, thereby capturing divide-and-conquer computations.

In the longer term, we are investigating non-static process networks. There is a
spectrum of possibilities, ranging from phased computations, in which the con�gu-
ration is changed periodically, through to what is essentially just grain size and data
placement control in a shared-memory parallel graph reduction implementation.

Hudak's Paral implementation [Hud86] allowed the programmer to specify the PE
where a computation should occur, using a run time variable calculation. Strand
[AI 88] and Concurrent Clean [vEPS90] o�er similar mechanisms with higher-level
features. Magee and Dulay achieve a similar result with their con�guration language
approach to imperative parallel programming [MD91]. Caliban is an attempt to
capture the pragmatic value of these ideas, while retaining a uniform, declarative
presentation which takes full advantage of the abstraction mechanisms of functional
programming.

Our thanks are due to our collaborators Hugh Glaser, John Wild, Pieter Hartel on
the FAST project at the University of Southampton, to Susan Eisenbach and David
Harper at Imperial College, to Jim Cownie at Meiko, and to Diomidis Spinellis
and his colleagues who wrote the prototype Haskell compiler whose front-end we are
using, as an undergraduate project. The work was funded in part by the UK Science
and Engineering Research Council and the Department of Trade and Industry, under
grant number GR/F 35081. The equipment was funded under grant number GR/G
31079.

[AI 88] AI Limited. language de�nition. Technical report, AI Lim-
ited, Greycaine Rd. Watford, Herts, UK, 1988.

[BvEG 87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kenn-
away, M.J. Plasmeijer, and M.R. Sleep. Term graph rewriting. 1987. In
[dBNT87, pages 141{158].

[dBNT87] J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors.
, volume I. Springer Verlag,

June 1987. LNCS 258.

,
Parallel Architectures and Languages Europe

map

map

Related work

Acknowledgements

References

Strand-88

Parle

[GHW90] Hugh Glaser, Pieter Hartel, and John Wild. A pragmatic approach to
the analysis and compilation of lazy functional languages. Technical
report CSTR 90-10, Department of Electronics and Computer Science,
University of Southampton, 1990. (In Proc. of the Workshop on Parallel
and Distributed Processing, So�a, 1990. North-Holland 1991).

[Gol88] Benjamin F. Goldberg.
. Research report, Yale University Department of Computer Sci-

ence, April 1988.

[Hud86] P. Hudak. Para-functional programming. , pages 60{70,
August 1986.

[Hug84] J. Hughes. Why functional programming matters. Report 16, Pro-
gramming Methodology Group, University of G�oteborg and Chalmers
Institute of Technology, Sweden, November 1984.

[HWe90] P. Hudak and P. Wadler (editors). Report on the programming lan-
guage Haskell, a non-strict purely functional language (Version 1.0).
Technical Report YALEU/DCS/RR777, Yale University, Department
of Computer Science, April 1990.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.
In . North-Holland, 1974.

[Kel89] Paul H.J. Kelly.
. Pitman/MIT Press, 1989.

[MD91] J. Magee and N. Dulay. A con�guration approach to parallel program-
ming. In , 1991. To appear.

[vEPS90] M.C.J.D. van Eekelen, M.J. Plasmeijer, and J.E.W. Smetsers. Parallel
graph rewriting on loosely-coupled machine architectures. Technical
report, Faculty of Computer Science and Mathematics, University of
Nijmegen, February 1990.

[Wad81] W.W. Wadge. An extensional treatment of dataow deadlock.
, 13:3{15, 1981.

[ZC90] Hans Zima and Barbara Chapman.
. ACM Press, 1990.

Multiprocessor Execution of Functional Pro-
grams

IEEE Computer

Information Processing 74

Functional Programming for Loosely-coupled Multipro-
cessors

PARLE'91

Theo-
retical Computer Science

Supercompilers for Parallel and
Vector Computers

