Paragon Specifications: Structure, Analysis and
Implementation

Paul Anderson', David Bolton? and Paul Kelly®

! Grammatech Inc. One Hopkins Place, Ithaca, New York 14850, USA

2 Department of Computer Science, City University, Northampton Square, London EC1V
0HB

? Department of Computing, Imperial College of Science, Technology and Medicine, Lon-
don SWT 2BZ

Abstract. Paragon is a notation for specifying object behaviours using sets of
rewrite rules, where rewriting is controlled by synchronous and asynchronous mes-
sage passing, and where objects may be dynamically created as a rewriting side-
effect. This paper overviews Paragon, and introduces a simple classification scheme
for analysis of Paragon specifications. Restrictions on specifications are discussed in
consideration of implementation feasibility and efficiency constraints. Implemen-
tation schemes based on the analysis and restrictions are defined. In particular,
a translation strategy for static systems is detailed and motivated with a worked
example. To reinforce the low-level nature of the derived implementation the trans-
lation 1s defined in terms of a digital hardware description language. Schemes for
the implementation of general dynamic systems are also considered.

1 Introduction

Paragon has been applied to the problem of specifying parallel architectures in sev-
eral ways, and at several levels. It captures the route from a term rewrite sys-
tem, annotated with control flow information, to a parallel implementation which
manages dynamic process creation and control through message passing [BHK89],
[BHK90]. The language design synthesises ideas drawn from graph rewriting systems
and process algebras; but 1s distinguished from other notations by its novel mixture
of message passing and rewrite systems semantics [BHK91].

This paper examines the structure of Paragon specifications and introduces im-
plementation schemes based on translation to systems of static synchronous parallel
processes. Section 2 introduces the Paragon language. Section 3 considers a simple
classification scheme, and introduces restrictions on specifications in consideration
of implementation issues. Section 4 describes how specifications might be imple-
mented. In particular, a translation strategy to Occam for static systems is detailed
and motivated with a worked example. Implementation schemes for general dynamic
systems are also discussed. Section 5 concludes by reviewing the results including
some interesting insights into the nature of Paragon specifications.

2 Overview of Paragon

A specification is a set of class definitions each of which 1s defined by type information
and a set of rewrite rules. To express control over rewriting, and to introduce the

2 Paul Anderson, David Bolton and Paul Kelly

concept of a process, Paragon rewrite rules may be augmented by a set of messages
to be sent should rewriting occur. A rule may therefore forward control to other
rules, and hence interaction between class instances is by means of synchronous and
asynchronous message passing. Rules can be regarded as being ‘triggered’ by receipt
of an appropriate message, which may carry parameters.

Our starting point in designing Paragon was a notation which incorporated
pattern-matching and rewriting of data structures, in the fashion of term-rewriting.
This notation has a natural interpretation as “term” graph-rewriting, by interpret-
ing copying in the right hand side of a rewrite rule as pointer, rather than structure,
copying [BVEGT87a]. In a general graph-rewriting language, non-root overwriting
can be used to model side-effects. In Paragon, message passing is used instead,
thereby simplifying the semantics of rewriting [BHK91].

The resulting language differs from DACTL [GKS87] and Lean [BvEG87b]
in making side-effects explicit as message passing and differs from FP2 [SJ89] in
allowing messages to be directed towards dynamically created objects.

2.1 Class definitions and rules

A specification in Paragon consists of a set of class definitions, a set of associated
data types, and a set of objects representing the initial state of the specified system.
Data types are specified using a syntax borrowed from Miranda [Tur85], and define a
free algebra with the named constructors. A class definition consists of the structure
of the object defined as a data type and a set of rewrite rules which define the
behaviour of an object of that class when it receives a message. Classes and data
types are written with constructors (possibly with arguments) or as tuples. For
example:

data direction ::= North | East | South | West
class ilist ::= Nil | Cons integer ilist
class buffer ::= (vector [North upto West] router,packet,direction)

The syntax of a Paragon rule is given in Fig. 1. A rule consists of a left hand side
and a right hand side and has the following form:

S given m(x)
when ¢

— S’
then C
where B

This rule is applicable when an object of a particular class whose state matches
the pattern & is passed a message m carrying arguments x. If the guard G evalu-
ates to true, the rule fires, the object is transformed into &', and communications C
are generated. Communications take the form obj ! message or obj !! message denot-
ing synchronous and asynchronous message-passing respectively. B introduces some
bindings of names (possibly to functions) used in &', B and C. G, C and B are all op-
tional. Expressions can contain references to self| the object receiving the message,
or to nil, the null object. New instances of objects are created with the expression
new (class name,initial state).

Paragon Specifications: Structure, Analysis and Implementation 3

rule) — (lhs) — (rhs)
lhs) — (state) [given (message) | [when (guard) |
message) — name [((state) {, (state) })]
guard) — name = (state)
| (predicate) | (guard) A {(guard) | {guard) V (guard) | ((guard))

(
(
(
(

(rhs) — (state) [then (tasks)] [where (bindings)]

(tasks) — name ! (outgoing) synchronous
| name !! (outgoing) asynchronous
| (tasks) || (tasks) parallel composition
| (tasks) ; (tasks) sequential composition
| ((tasks))

{ontgoing) — name [((expr) { . (expr) })]

Fig.1. Paragon rules syntax

Rules can also be defined without a given clause, with the intention that the
rule be applied ‘spontaneously’ when the state matches &, and G is true, with no
triggering message pass. An example of the use of such rules is given in Sect. 4.4.

2.2 Example

The first example is a parallel version of a simple priority queue which can store
integers; later we will examine a more elaborate fault tolerant router specification.

A priority queue is a fifo which accepts input messages tagged with priorities
and delivers them in arrival order except that higher priority messages may overtake
lower priority ones.

Our implementation uses a linked list of dynamically allocated objects to store
queued data. A message tagged with its priority (an integer) is accepted at the head
of this list and is propagated along the chain to its appropriate position. The highest
priority is represented by the lowest integer. Messages are delivered from the queue
by simply taking the head element.

In Paragon we represent the members of the queue using a class pq which can
represent the empty queue (EQ objects) and the non-empty queue (PQ objects).

class pq ::= EQ | PQ integer pq {the queue}
class obj := ... {client class}

Queue objects receive put messages carrying integer parameters representing prior-
ities in an arbitrary order; receipt of a get message outputs the largest, which will
be at the head of the queue (by sending the message got to the client). Each queue
instance stores one integer priority; the rest of the queue is represented by reference
to another instance.

4 Paul Anderson, David Bolton and Paul Kelly

EQ given get(o)
— EQ
then o !! fail
PQigq given get(o)
- q
then o !l got(i)
EQ given put(i’)
— PQi g
where q' = new(pq, EQ)
PQigq given put(i’)
when i’ < i
— PQi g
where q' = new(pq, PQiq)
PQigq given put(i’)
when i' > i
— self
then q !l put(i’)

The first put rule shows the receipt of a message to an empty queue: a new queue
object is created to represent the end of the new (one message) queue. The second
put rule shows the addition of a higher priority message to the head of the queue,
with creation (through new) of a new object to represent the head. The final rule
shows the propagation of a lower priority message to its proper place in the queue.

Parallelism is achieved here through asynchronous message-passing; several put
messages can propagate through a queue at the same time inputting different priority
integers. The example is dynamic in allocation of new queue objects as the queue
lengthens. Objects named o above are in a queue client class called obj.

3 Structure of specifications

This section introduces a simple classification scheme for analysing Paragon spec-
ifications. To ensure they are amenable to implementation by the route described
in Sect. 4, we also introduce a series of restrictions on specifications, which reveal
further interesting aspects of the nature of Paragon specifications.

3.1 Classification

A specification consists of a set of classes C' (each defined by structure and rules) and
a set of objects O (representing the initial state). An object o that communicates
synchronously (asynchronously) with a set of objects O is said to be synchronous
in (asynchronous in) O, and is written o € S(0O) (o € A(O)). A specification with
no asynchronous message passing is said to be synchronous. Static analysis can

Paragon Specifications: Structure, Analysis and Implementation 5

reveal connectivity between objects, following which it is straightforward to trace
the objects to which synchronous and asynchronous messages apply.

A message is total if, for the class to which it applies, it can always be consumed.
That 1s, the rules admitting the message must cover all the possible values of the
target object’s class. A message is partial if pattern matching or guard evaluation
after message receipt can fail, requiring the message to be retained for re-matching.
Once again, static analysis of a specification can detect totality, except in the unusual
case of complex guards.

An object o (class ¢) that can create objects which are instances of the classes in
C' is said to be dynamic in C, and is denoted o € D(C) (¢ € D(C)). A specification
with no objects or classes dynamic in any classes is said to be static.

3.2 Restriction
Restrictions arise from consideration of implementation issues as follows:

1. Only one-level pattern matching is allowed. That is, we can match the structure
of an object, but not the structure of objects within that object. This can be
detected directly from the patterns specified in a set of rules.

The reason for this restriction is to avoid the implicit critical region which would
require locking during pattern matching to avoid inconsistent results. This re-
striction could be relaxed for data objects: since data does not change once it
has been constructed the problem of atomic matching does not arise.

This restriction can also be avoided by transformation of the rules in those cases
where synchronisation problems have been shown not to exist (this is related to
a problem in compiling DACTL [GKS87]).

2. Only total messages are allowed.

For partial messages, when pattern-matching and/or guard evaluation fails for
all rules implemented by a message procedure, the object processor must retain
multiple messages (and message arguments) for each message sort received by
the object, and then continually recall the message procedure. Each message
must be assigned equal priority in this attempted execution. We discount such
an implementation as inefficient and suggest that a viable translation is possible
only for total messages.

Except in the case of complex guards, totality can be detected by static analysis.

3. Data types are not recursive.

This can be statically checked from type specifications. The restriction applies
so that types can be represented in a fixed amount of space, without pointers.
It avoids the possibility of sharing of object state. The restriction can, of course,
be lifted in some cases.

Pointer structures within an object processor’s memory, for example, are not very
troublesome, although in general garbage collection may be involved. Garbage
collection may be avoided by copying entire data structures instead of copying
pointers (intuitively this follows from the immutability of data structures; a more
formal treatment could follow [BVEG*87a]).

In general, however, Paragon allows data structures to be passed in messages,
and normally the intended meaning is that sharing of substructure occurs. This
raises many problems for a hardware realisation.

6 Paul Anderson, David Bolton and Paul Kelly

4. In any parallel composition of messages, the targets must all be different (e.g.
in ol I'vl || 02 ! v2, ol and 02 must be different).
This avoids conflicts for access to communications channels.
Since the names of objects may be carried in messages, this cannot be statically
detected.

These classifications and restrictions provide some insight into the nature of Paragon
specifications; we return to this topic in Sect. 5.

4 Implementation schemes

In this section we discuss implementation schemes for Paragon specifications based
on the classification and restrictions described in Sect. 3. First, we consider static,
synchronous specifications and present a worked example for a fault tolerant router
system. Then we discuss more complex issues arising when a specification involves
asynchronous message passing and dynamic object creation (as exemplified by the
priority queue example).

The translations presented are intended to preserve the semantics described in
[BHK91]. However, the restrictions discussed already define a particular treatment of
the atomicity of pattern matching, and the schemes described in this section impose
further decisions on, for example, the order of rule matching and the fair treatment
of spontaneous rules. These are key issues, of course, and we discuss them within
the section and return to them in Sect. 5.

4.1 Hardware implementation for static systems

We begin by showing how static, synchronous Paragon specifications can be imple-
mented using concrete, low-level constructions. To reinforce the low-level nature of
this implementation we will describe the implementation in terms of a realisation in
digital hardware.

Each of the functions specified in the Paragon system requires a feasible hardware
implementation as follows:

Objects. For each object in the system we create an object processor. This is a finite
state automaton responsible for storing the state of the object, receiving mes-
sages directed at the object, and in consequence executing appropriate actions
specified by the rules for the object.

A direct hardware implementation is possible when the specification is static so
that the number and kind of object processors can be determined.

State. The state of each object 1s maintained in the corresponding object processor’s
local memory.

We avoid the need to access remote object’s local memory because we have only
one-level pattern matching, and data objects do not contain pointers.

Under these restrictions, data and objects share the same representation: a tuple
is represented by a register containing a bitfield for each component. If a com-
ponent is in turn a tuple, its component bitfields appear in-line. A constructor
application is treated as a tuple whose first element is a small integer indicating

Paragon Specifications: Structure, Analysis and Implementation 7

which constructor. Where alternative constructor applications may appear, the
tuple size is that needed for the largest alternative.

Commaunication. We provide a physical channel for every potential communication

between object processors. Each channel is implemented using enough wires to
accommodate the largest message sent, with messages represented as indicated
for data. Connections are unidirectional, with the receiving object processor
acknowledging receipt when it has accepted the message and executed the asso-
ciated rules. An appropriate block of logic implements the alternative rules for
each message sort received.
Determining potential communication paths is troublesome since Paragon allows
the name of an object to be communicated in a message. The worst case would
require a fully-connected network of channels, which is unacceptable: some kind
of shared network would have to be introduced. Data flow analysis can be used
to determine which objects can communicate with one another to avoid this in
most cases.

This design leads to a translation scheme from Paragon to a hardware description
language. To aid explanation we choose a form of Occam [Inm88] suitable for compi-
lation to a silicon layout [MK8&7]. This paper shows how a suitable subset of Occam
can be used to provide a behavioural description for hardware devices, and how
this can be translated to a structural hardware description language defining buses,
registers etc. The language used is Inmos’ own ‘HDL’.

We augment the Occam subset with enumerated and record types. These can be
readily translated to true Occam BYTE or other types to express the representation
of state as described above. The PAR construct will appear only at the outermost
level, with the assumption that concurrent processes are implemented using one
processing element for each process. For brevity, SEQs are omitted. Object processors
will be represented by Occam PROCs; we note [MK87] suggests that these can be
implemented by body substitution or by conventional closed procedure calls of known
fixed depth.

Communication will be through variant protocol channels defined between object
processors (one variant per message sort received). When the ‘name’ of an object
is communicated in messages or stored in an object state it is represented by the
channel connected to its object processor. Each message sort received will also be
represented as a PROC called by the object processor.

4.2 Object processors

A Paragon specification consists of classes whose behaviour is described in terms of
guarded message-receipt and ‘spontaneous’ rules. We must translate each set of rules
for a class into an appropriate set of object processors dealing with both message-
receipt and spontaneous rules (spontaneous rules have no given clause, so should be
applied whenever the object’s state matches the LHS; see Sect. 2.1).

The skeleton description for an object processor with both message-receipt and
spontaneous rules i1s shown in Fig. 2. The processor is described in terms of an in-
ternal record state and channel connections. Variant protocol channels ing,...,in,
represent incoming messages (one variant per message sort received by the ob-
ject), with successful message receipt and execution signalled to the sender via the

8 Paul Anderson, David Bolton and Paul Kelly

PROC object-processor (CHAN OF Object-in ing,ing,. .. ,in;,
CHAN OF BOOL sackg,sackq,. .., ,sack.,
CHAN OF Object-out outg,outy,. .. ,out.)
Object-state state :
Set up channels etc as appropriate
WHILE TRUE
ALT
ing ? message ; arguments
Deal with spontaneous rule if necessary
call procedure for message (pass state, and arguments)
sackg ! TRUE Acknowledgement to sender

in, ? message ; arguments
Similar to ing

TRUE & SKIP

Deal with spontaneous rule if necessary

Fig. 2. Object processor description

sackg,. . .,sack, channels. Channels outg,. . . ,outs represent objects to which messages
are sent during execution of the message procedures, and will be assigned to appro-
priate internal object state components representing those objects.

Fair treatment of ‘spontaneous’ rewrites is ensured through polling both when
there is no message receipt (‘TRUE & SKIP’ in the Occam idiom) and immediately
after each receipt.

4.3 Messages and associated rules

Consider the Paragon rule for a message m that communicates n arguments x. This
is defined in Paragon by a set of k rules, each of the form R;, as follows (Sect. 2.1
explains rules and rewrites in detail) :

S; given m(x)
when G;
—~ 8
then C;
where B;

We must translate alternative rules for a given message into a procedure in the target
language as follows:

TMJ[R] maps a set of Paragon rules for a given message onto a procedure.

TO[S] maps an object on the left-hand-side of a Paragon rule onto a set of state-
ments that will both test if the current object matches and assign values to names
in the pattern match (if necessary). If the match is successful, a flag success is
set.

Paragon Specifications: Structure, Analysis and Implementation 9

TB[B] maps a set of Paragon where bindings onto a set of appropriate assignments.

TC[C] will map the set of message passes onto appropriate set of communications
via channels. We define a variant protocol channel which implements one variant
per message defined for a class, carrying the message arguments in the rest of
the protocol.

TG[G] will map the set of Paragon guards onto a logical expression. These guards
will operate not only on the variables bound by the message and on the state of
the object, but also on the variables bound by the TO pattern-match and the
required subset of those bound by the TB where bindings.

TS[&’] will map an object onto statements in the target language which will rewrite
the state so that it appropriately represents the structure of that object.

Figure 3 shows the result of TM[R] for a message with k rules communicating n
arguments x. The PROC has the same name as the message received and is defined

PROC message-name (Object-state state, Typename Xq,.. ., Typename Xn_1)
BOOL success :
TO[So] Pattern match
IF
success AND TG[Go] Guards
TB[5o] Bindings
TS[S{] Change state
TC[Co] Communications
TRUE
TO[S:]
IF

success AND TG[G1]

And so on to translations for y_1

Fig. 3. Result of translation function TM[R] for % rules

in terms of state, which represents the object receiving the message.
Spontaneous rules have a similar translation to replace the phrase Deal with
spontaneous rule if necessary in the object processor description (Fig. 2).

4.4 Example

The static example is a simplified version of a fault-tolerant packet-switched commu-
nications router for WSI [AO88]. A router contains its address expressed as a tuple
of its and y coordinates on the wafer. As a result of an initialisation procedure,
a router also records the status of its neighbours. A neighbour can be working, not
working (‘dud’), or at the edge. A one packet buffer is used to implement a store
and forward buffering mechanism to the receiving neighbour router. A packet carries
the address of its destination and some status information as well as the payload.

10 Paul Anderson, David Bolton and Paul Kelly

The packet operates in two modes, blocked or unblocked. While it is unblocked it
takes the shortest path to its destination. When it becomes blocked by encountering
a wall of faulty routers, it stores its displacement from its destination (the integer in
the packet type below), and follows the edge of the area of duds until it finds it is
closer to its destination than when it became blocked.

4.5 Paragon description
The classes and data types required are as follows:

class router ::= (address,vector [North upto West] status,buffer)
class buffer ::= (vector [North upto West] router,packet,direction)
data packet ::= (address,handedness,blocked,integer,payload)

data address ::= (integer,integer)

data status ::= Good | Dud | Edge

data direction ::= North | East | South | West

data handedness ::= Left | Right

data blocked ::= Blocked | Unblocked

The route message takes as arguments the incoming packet and direction:

(a,-,-) given route({a,_ ,-,_.p).-) (Home)
— self
then action on reaching destination
({x,y),stat,buff) given route({{xd,yd),h,b,s,p).dir) (Unblocked)
when stat [prim] = Good A |x-xd| + |y-yd| < s
— self
then buff ! send({{xd,yd),h,Unblocked,999,p},prim)
where prim = primary({x,y),{xd,yd})
({x,y),stat,buff) given route({{xd,yd),h,b,s,p).dir) (Blocked)
when |x-xd| + |y-yd| > s V stat [prim] # Good
— self
then buff | send({{xd,yd),h’,Blocked,s’,p},newdir)
where prim = primary({x,y),{xd,yd})

In all of the above rules, the state of the router remains unchanged. The first rule
(Home) is applicable when the packet has reached its destination address. The second
rule (Unblocked) matches when the packet is operating in unblocked mode, or when
it is closer to its destination than when it became blocked. The optimal forward
direction is given by a table lookup performed by the function primary (for brevity
not defined here). This is then used to index into the vector of status registers
and the vector of neighbouring routers. Rule (Blocked) matches when the packet is
following the boundary of the area of duds. In this rule newdir, h’, and s’ represent
new direction, new handedness and new displacement respectively. The equations
defining these values appear in the where clause in a complete version; here they
are omitted.

Two further rules for the class buffer implement a simple store and forward
buffering mechanism:

Paragon Specifications: Structure, Analysis and Implementation 11

(sroutes,nil,nil) given send(pack,dir)
— (sroutes,pack,dir)

(sroutes,spack,sdir)
— (sroutes,nil, nil)
then sroutes [sdir] ! route(spack,sdir)

The second rule is ‘spontaneous’; it does not requires a triggering message. It de-
scribes the forwarding action through a message-pass to the appropriate neighbour
router identified by indexing the vector of neighbours with the direction sdir stored
in the buffer. This allows indefinite delay, thereby modelling asynchronous commu-
nication between routers.

An example comprising a four-connected wafer consisting of four routers arranged
as a square is shown in Fig. 4, together with the initial object configuration which
represents it. For simplicity buffers are not shown in the diagram. To exercise the
routing algorithm, in this example router d is non-functional. The vector of neighbour
states is given in the order [north east south,west].

a(0,0) [> b(1,0) a = ((0,0),[Edge,Good,Good,Edge],Ba)
b = ((1,0),[Edge Edge,Dud,Good],Bb)
A A c = ((0,1),[Good,Dud,Edge,Edge],Bc)
d = nil
Y Y Ba = ([nil,b,c,nil],nil,nil)
P -~ . Bb = ([nil,nil,d,a],nil,nil}
o(0.1) o>y d(nil) Bc = ([a,d,nil,nil|,nil,nil)

Fig.4. A simple specification

4.6 Translation to Occam

We analyse the router example to determine the interconnection topology of the sys-
tem of required object processors and then apply the translation scheme to the rules.
The object processors and topology are trivially given by the following equations:

a € S({Ba,Pa}) Ba € S({b,c}) b € S({Bb,Pb}) Bb € S({a,d})
c € S({Bc,Pc}) Bc € S({a,d}) d € S(0)

There will normally be one variant per message sort defined for a class. In this
specification routers receive the single message route, and buffers the single message
send, so the associated protocols therefore contain one variant only:

12 Paul Anderson, David Bolton and Paul Kelly

PROTOCOL Buffer-in-Router-out
CASE send ; Packet ; Direction :
PROTOCOL Buffer-out-Router-in
CASE route ; Packet ; Direction :
RECORD Buffer-state IS
[North..West] CHAN OF Buffer-out-Router-in sroutes; Packet spack; Direction sdir :
RECORD Router-state IS
Address addr; [North..West] Status stat; CHAN OF Buffer-in-Router-out buff :

The buffer state is represented by a record, with the four router objects implemented
by channels to the appropriate router object processors. Other type declarations are
obvious and omitted.

Figure 5 shows the translation to an object processor for class buffer. The buffer

PROC buffer-processor(CHAN OF Buffer-in-Router-out input, CHAN OF BOOL bsack,
CHAN OF Buffer-out-Router-in N,E,S, W)
Buffer-state state :
Packet pack :
Direction dir :
state.sroutes [North..West] := [N,E,S,W] Connect up channels
WHILE TRUE
ALT
input ? send ; pack ; dir
success = state.spack <> nil AND state.sdir <> nil Spontaneous
IF
success
state.spack := nil
state.sdir := nil
state.sroutes[state.sdir] ! route ; state.spack ; state.sdir
TRUE
SKIP
send (state,pack,dir)
bsack ! TRUE
TRUE & SKIP
success = state.spack <> nil AND state.sdir <> nil
IF
success
state.spack := nil
state.sdir := nil
state.sroutes[state.sdir] ! route ; state.spack ; state.sdir
TRUE
SKIP

Fig. 5. Object processor for buffer

processor is connected to a maximum of four routers, one in each direction, and has

Paragon Specifications: Structure, Analysis and Implementation 13

one incoming connection.

Figure 6 shows the translated PROC for message route. The buffer is represented
by a connection to the appropriate buffer object processor through a channel with
a variant protocol for the single message send.

PROC route (Router-state state, Packet pack, Direction dir)
BOOL success : INT disp : Direction prim :
disp := abs(state.addr.x—pack.addr.y)+abs(state.addr.y—pack.addr.y)

prim := primary(state.addr,packet.addr) Same in both rules
success := state.addr = pack.addr
IF
success
action on reaching destination
TRUE
success := TRUE No pattern match here
IF

success AND state.stat[prim] = Good AND disp < pack.disp
pack.blocked := Unblocked
pack.disp := 999
state.buff ! send ; pack ; prim
TRUE
success := TRUE
IF
success AND disp >= pack.disp AND state stat[prim] <> Good
Compute new direction newdir, pack.disp, pack.hand
pack.blocked := Blocked
state.buff ! send ; packet ; newdir
TRUE
SKIP

Fig. 6. Translation of the router example

4.7 General systems

This section addresses the complex question of how to implement Paragon specifi-
cations whose rules use asynchronous message passing and dynamic object creation
(for example, the parallel priority queue in Sect. 2.2).

One approach to dynamic specfications involves analysis to make assumptions
about the scope of the required system and possible modification of the specification
to make 1t more amenable to hardware implementation. This is followed by definition
of object processors for objects in the dynamic class to match these assumptions. In
the case of the priority queue, for example, we might modify the rules for get to ‘shuf-
fle up’ queue entries leaving an ‘empty’ entry at the end of the queue. The specified
behaviour then more closely matches that of a feasible hardware implementation.

14 Paul Anderson, David Bolton and Paul Kelly

A second approach we describe in more detail defines a source-to-source Paragon
transformation to produce a static synchronous specification which can then be
translated as defined in Sect. 4.1. We do not suggest particular implementations but
describe additional static synchronous systems which are suggestive of conventional
solutions using buffers and heaps. Implementation of the more complex communi-
cation characteristics produced by the transformations might be (in Occam terms)
through passing of indices to shared arrays of channels among the processes.

4.8 Asynchronous message passing

We introduce new objects called task pools which will buffer asynchronous com-
munications. All asynchronous communications can be transformed to synchronous
communications to a task pool. A task pool is made up of a list of tasks, where a
task is defined as a destination, a message and a list of arguments. A task pool can
be defined as a synchronous Paragon class receiving the single message add-task. All
asynchronous communications, for example a ! m(x), can be translated into 7' ! add-
task(a,m,x), where T is a task-pool. A task pool is required for every object that is
asynchronous in any other object. Each task pool associated with an object o must
be shared with (i.e. connected to) every object in which o is asynchronous.

4.9 Dynamic specifications

We transform all classes known to be dynamic to use a heap to store instances of the
class. Each heap will be specific to its class. Individual objects will then be identified
by their place in the heap. New objects will be created by allocating a place in the
heap. If the specification contains a dynamic class ¢, we must implement this class
with two new objects in the initial state: H(¢) which represents the heap for objects
of class ¢; and P(c), known as the class processor for ¢, which will implement the
rules for class c.

All objects dynamic in ¢ must be connected synchronously to H(c), and all
objects synchronous (asynchronous) in ¢ must be connected synchronously (asyn-
chronously) to P(c).

The heap object receives four messages: new(a), which allocates space for the
state of an object and assigns the name-tag for the allocated space to a; free(a),
which frees the space with name-tag a; read(x,a), which reads the current object at
name-tag a into x; and write(a,x), which rewrites the object at the name-tag a to
state x.

The class processor P(c) is a static object to which all messages sent to objects
of class ¢ are delivered. Objects of class ¢ are identified by their name-tag in H(c),
so the operation of P(c) when it receives a message will be to read the state of the
object from H(c), execute the appropriate message procedure, and write the object
back if it has been rewritten. Class processors can be defined in the description
language in the same way as object processors.

The transformations required on a specification to incorporate heaps and class
processors for a dynamic class ¢ in a set of classes €' with a typical object a
are as follows. All synchronous communications a ! m(x) must be transformed into
P(c) ! m(a,x). All asynchronous communications a !! m(x) must be transformed into

Paragon Specifications: Structure, Analysis and Implementation 15

T ! add-task(P(c),m,(a,x)), where T is the task pool for C'. Bindings containing dy-
namic object creation through new must be transformed to communicate with the
heap associated with the class being allocated, so

a = new (c, initialstate)
must be transformed into the added communications
H{e) ' new(a); H(c) ! write(a,initialstate)

where a is the bound name for the new object in the current rule.

5 Conclusion

Our main purpose in this work was to remove a weak link in the earlier papers
applying Paragon to describe the implementation of parallel graph reduction. The
objective there was to show how, by a sequence of refinements, a parallel computer
architecture could be derived from a specification of its primitive operations as a
term rewrite system [BHK91].

The most interesting outcome of the implementation effort has been a much more
detailed understanding of the structure of Paragon specifications. This was manifest
in the classification and restrictions we imposed on specifications, which seem to
identify key issues in any analysis of parallel systems implementation.

For static systems, in addition to the restrictions discussed earlier, we observe
that, for a perfectly fair implementation, the given translation requires that exactly
one rule be applicable given a particular set of incoming messages (including the
empty set, to include spontaneous rewrites). This is rather a strict constraint. Es-
sentially it arises because each object processor has no internal parallelism, so can
only test for the applicability of one rule at once, in a predetermined order. This is
a generalisation of the rewriting notion of sequentiality. As in functional program-
ming, it very often turns out sequential order of testing is adequate for a particular
application. Unlike in the term-rewriting case, the restriction to sequentiality does
not result in a deterministic language, since racing between messages can still occur.

We dealt with asynchronous messages and dynamic object creation using a
source-to-source Paragon transformation as described in Sect. 4.7. The introduc-
tion of “task pools” implies implementation of buffering (lists are used to model
buffers in Paragon specifications)—as usual this must be shown to be effective (no
overflow, etc) for the application concerned. Of course, garbage collection for dy-
namic objects is also involved (except in very special cases), and in general this may
require cooperation between many of the “class processors” introduced.

To conclude, this paper addressed the problem of bridging the final gap between
a low-level Paragon description of an architecture, and the hardware itself. Our ex-
perience has been that in the static case the translation is direct enough to support
the view that Paragon programs specify hardware, but that for dynamic and asyn-
chronous specifications non-trivial design decisions must be made. The fact that
these decisions can be expressed within Paragon lends further support for our use
of the language in layered architectural design of parallel systems.

16

Paul Anderson, David Bolton and Paul Kelly

References

[AO8S]

[BHKS9]

[BHK90]

[BHK91]

[BvEGt87a)

[BvEGT87b]

[dB89]

[dBNTS7]

[GKS87]

[Tnm88]
[MK387]

[ST89]

[Tur85]

Paul Anderson and Peter Osmon. A Fault Tolerant Communications Archi-
tecture for Wafer Scale Integration. In Proceedings of the Alvey Technical
Conference, pages 504-507, 1988. City University TCU/CS/1988/13.

David Bolton, Chris Hankin, and Paul Kelly. Parallel object-oriented descrip-
tions of graph reduction machines (extended abstract). In PARLE’89 Parallel
Architectures and Languages Furope, pages 158—175. Springer Verlag, 1989.
David Bolton, Chris Hankin, and Paul Kelly. Parallel object-oriented descrip-
tions of graph reduction machines. Future Generations Computer Systems,
6:225-239, 1990.

D. Bolton, C.L. Hankin, and P.H.J. Kelly. An operational semantics for
Paragon: A design notation for parallel architectures. New Generation Com-
puting, 9:171-197, 1991.

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway,
M.J. Plasmeijer, and M.R. Sleep. Term graph rewriting. 1987. In [dBNTS87,
pages 141-158].

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway,
M.J. Plasmeijer, and M.R. Sleep. Towards an intermediate language for graph
rewriting. 1987. In [dBNT87, pages 159-174].

J.W. de Bakker, editor. Languages for Parallel Architectures. Parallel Com-
puting. Wiley, 1989.

J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors. PARLE, Parallel
Architectures and Languages Europe, volume 1. Springer Verlag, June 1987.
LNCS 258.

J.R.W. Glauert, J.R. Kennaway, and M.R. Sleep. DACTL: a computational
model and compiler target language based on graph reduction. Report SYS-
(C87-03, school of Information Systems, University of East Anglia, 1987.
Inmos Ltd. Occam-2 Reference manual. Prentice Hall International, 1988.
David May and Catherine Keane. Compiling occam to silicon. Technical
note 23, Inmos Ltd., 1000 Aztec West, Almondsbury, Bristol BS12 45Q, UK.,
1987.

Ph Schnoebelen and Ph Jorrand. Principles of FP2: Term Algebras for Spec-
ification of Parallel Machines. 1989. In [dB8&9, pages 223-273].

D.A. Turner. Miranda: A non-strict functional language with polymorphic
types. In Functional Programming Languages and Computer Architecture,
Nancy, France. Springer Verlag, 1985. LNCS 201.

This article was processed using the IATpX macro package with LMAMULT style

