
Paragon Speci�cations: Structure, Analysis andImplementationPaul Anderson1, David Bolton2 and Paul Kelly31 Grammatech Inc. One Hopkins Place, Ithaca, New York 14850, USA2 Department of Computer Science, City University, Northampton Square, London EC1V0HB3 Department of Computing, Imperial College of Science, Technology and Medicine, Lon-don SW7 2BZAbstract. Paragon is a notation for specifying object behaviours using sets ofrewrite rules, where rewriting is controlled by synchronous and asynchronous mes-sage passing, and where objects may be dynamically created as a rewriting side-e�ect. This paper overviews Paragon, and introduces a simple classi�cation schemefor analysis of Paragon speci�cations. Restrictions on speci�cations are discussed inconsideration of implementation feasibility and e�ciency constraints. Implemen-tation schemes based on the analysis and restrictions are de�ned. In particular,a translation strategy for static systems is detailed and motivated with a workedexample. To reinforce the low-level nature of the derived implementation the trans-lation is de�ned in terms of a digital hardware description language. Schemes forthe implementation of general dynamic systems are also considered.1 IntroductionParagon has been applied to the problem of specifying parallel architectures in sev-eral ways, and at several levels. It captures the route from a term rewrite sys-tem, annotated with control
ow information, to a parallel implementation whichmanages dynamic process creation and control through message passing [BHK89],[BHK90]. The language design synthesises ideas drawn from graph rewriting systemsand process algebras, but is distinguished from other notations by its novel mixtureof message passing and rewrite systems semantics [BHK91].This paper examines the structure of Paragon speci�cations and introduces im-plementation schemes based on translation to systems of static synchronous parallelprocesses. Section 2 introduces the Paragon language. Section 3 considers a simpleclassi�cation scheme, and introduces restrictions on speci�cations in considerationof implementation issues. Section 4 describes how speci�cations might be imple-mented. In particular, a translation strategy to Occam for static systems is detailedand motivated with a worked example. Implementation schemes for general dynamicsystems are also discussed. Section 5 concludes by reviewing the results includingsome interesting insights into the nature of Paragon speci�cations.2 Overview of ParagonA speci�cation is a set of class de�nitions each of which is de�ned by type informationand a set of rewrite rules. To express control over rewriting, and to introduce the

2 Paul Anderson, David Bolton and Paul Kellyconcept of a process, Paragon rewrite rules may be augmented by a set of messagesto be sent should rewriting occur. A rule may therefore forward control to otherrules, and hence interaction between class instances is by means of synchronous andasynchronous message passing. Rules can be regarded as being `triggered' by receiptof an appropriate message, which may carry parameters.Our starting point in designing Paragon was a notation which incorporatedpattern-matching and rewriting of data structures, in the fashion of term-rewriting.This notation has a natural interpretation as \term" graph-rewriting, by interpret-ing copying in the right hand side of a rewrite rule as pointer, rather than structure,copying [BvEG+87a]. In a general graph-rewriting language, non-root overwritingcan be used to model side-e�ects. In Paragon, message passing is used instead,thereby simplifying the semantics of rewriting [BHK91].The resulting language di�ers from DACTL [GKS87] and Lean [BvEG+87b]in making side-e�ects explicit as message passing and di�ers from FP2 [SJ89] inallowing messages to be directed towards dynamically created objects.2.1 Class de�nitions and rulesA speci�cation in Paragon consists of a set of class de�nitions, a set of associateddata types, and a set of objects representing the initial state of the speci�ed system.Data types are speci�ed using a syntax borrowed fromMiranda [Tur85], and de�ne afree algebra with the named constructors. A class de�nition consists of the structureof the object de�ned as a data type and a set of rewrite rules which de�ne thebehaviour of an object of that class when it receives a message. Classes and datatypes are written with constructors (possibly with arguments) or as tuples. Forexample:data direction ::= North j East j South j Westclass ilist ::= Nil j Cons integer ilistclass bu�er ::= hvector [North upto West] router,packet,directioniThe syntax of a Paragon rule is given in Fig. 1. A rule consists of a left hand sideand a right hand side and has the following form:S given m(x)when G! S0 then Cwhere BThis rule is applicable when an object of a particular class whose state matchesthe pattern S is passed a message m carrying arguments x. If the guard G evalu-ates to true, the rule �res, the object is transformed into S0, and communications Care generated. Communications take the form obj ! message or obj !! message denot-ing synchronous and asynchronous message-passing respectively. B introduces somebindings of names (possibly to functions) used in S0, B and C. G, C and B are all op-tional. Expressions can contain references to self, the object receiving the message,or to nil, the null object. New instances of objects are created with the expressionnew (class name,initial state).

Paragon Speci�cations: Structure, Analysis and Implementation 3hrulei ! hlhsi ! hrhsihlhsi ! hstatei [given hmessagei] [when hguardi]hmessagei ! name [(hstatei f , hstatei g)]hguardi ! name = hstateij hpredicatei j hguardi ^ hguardi j hguardi _ hguardi j (hguardi)hrhsi ! hstatei [then htasksi] [where hbindingsi]htasksi ! name ! houtgoingi synchronousj name !! houtgoingi asynchronousj htasksi k htasksi parallel compositionj htasksi ; htasksi sequential compositionj (htasksi)houtgoingi ! name [(hexpri f , hexpri g)]Fig. 1. Paragon rules syntaxRules can also be de�ned without a given clause, with the intention that therule be applied `spontaneously' when the state matches S, and G is true, with notriggering message pass. An example of the use of such rules is given in Sect. 4.4.2.2 ExampleThe �rst example is a parallel version of a simple priority queue which can storeintegers; later we will examine a more elaborate fault tolerant router speci�cation.A priority queue is a �fo which accepts input messages tagged with prioritiesand delivers them in arrival order except that higher priority messages may overtakelower priority ones.Our implementation uses a linked list of dynamically allocated objects to storequeued data. A message tagged with its priority (an integer) is accepted at the headof this list and is propagated along the chain to its appropriate position. The highestpriority is represented by the lowest integer. Messages are delivered from the queueby simply taking the head element.In Paragon we represent the members of the queue using a class pq which canrepresent the empty queue (EQ objects) and the non-empty queue (PQ objects).class pq ::= EQ j PQ integer pq fthe queuegclass obj ::= : : : fclient classgQueue objects receive put messages carrying integer parameters representing prior-ities in an arbitrary order; receipt of a get message outputs the largest, which willbe at the head of the queue (by sending the message got to the client). Each queueinstance stores one integer priority; the rest of the queue is represented by referenceto another instance.

4 Paul Anderson, David Bolton and Paul KellyEQ given get(o)! EQ then o !! failPQ i q given get(o)! q then o !! got(i)EQ given put(i')! PQ i' q' where q' = new(pq, EQ)PQ i q given put(i')when i' < i! PQ i' q' where q' = new(pq, PQ i q)PQ i q given put(i')when i' � i! self then q !! put(i')The �rst put rule shows the receipt of a message to an empty queue: a new queueobject is created to represent the end of the new (one message) queue. The secondput rule shows the addition of a higher priority message to the head of the queue,with creation (through new) of a new object to represent the head. The �nal ruleshows the propagation of a lower priority message to its proper place in the queue.Parallelism is achieved here through asynchronous message-passing; several putmessages can propagate through a queue at the same time inputting di�erent priorityintegers. The example is dynamic in allocation of new queue objects as the queuelengthens. Objects named o above are in a queue client class called obj.3 Structure of speci�cationsThis section introduces a simple classi�cation scheme for analysing Paragon spec-i�cations. To ensure they are amenable to implementation by the route describedin Sect. 4, we also introduce a series of restrictions on speci�cations, which revealfurther interesting aspects of the nature of Paragon speci�cations.3.1 Classi�cationA speci�cation consists of a set of classes C (each de�ned by structure and rules) anda set of objects O (representing the initial state). An object o that communicatessynchronously (asynchronously) with a set of objects O is said to be synchronousin (asynchronous in) O, and is written o 2 S(O) (o 2 A(O)). A speci�cation withno asynchronous message passing is said to be synchronous. Static analysis can

Paragon Speci�cations: Structure, Analysis and Implementation 5reveal connectivity between objects, following which it is straightforward to tracethe objects to which synchronous and asynchronous messages apply.A message is total if, for the class to which it applies, it can always be consumed.That is, the rules admitting the message must cover all the possible values of thetarget object's class. A message is partial if pattern matching or guard evaluationafter message receipt can fail, requiring the message to be retained for re-matching.Once again, static analysis of a speci�cation can detect totality, except in the unusualcase of complex guards.An object o (class c) that can create objects which are instances of the classes inC is said to be dynamic in C, and is denoted o 2 D(C) (c 2 D(C)). A speci�cationwith no objects or classes dynamic in any classes is said to be static.3.2 RestrictionRestrictions arise from consideration of implementation issues as follows:1. Only one-level pattern matching is allowed. That is, we can match the structureof an object, but not the structure of objects within that object. This can bedetected directly from the patterns speci�ed in a set of rules.The reason for this restriction is to avoid the implicit critical region which wouldrequire locking during pattern matching to avoid inconsistent results. This re-striction could be relaxed for data objects: since data does not change once ithas been constructed the problem of atomic matching does not arise.This restriction can also be avoided by transformation of the rules in those caseswhere synchronisation problems have been shown not to exist (this is related toa problem in compiling DACTL [GKS87]).2. Only total messages are allowed.For partial messages, when pattern-matching and/or guard evaluation fails forall rules implemented by a message procedure, the object processor must retainmultiple messages (and message arguments) for each message sort received bythe object, and then continually recall the message procedure. Each messagemust be assigned equal priority in this attempted execution. We discount suchan implementation as ine�cient and suggest that a viable translation is possibleonly for total messages.Except in the case of complex guards, totality can be detected by static analysis.3. Data types are not recursive.This can be statically checked from type speci�cations. The restriction appliesso that types can be represented in a �xed amount of space, without pointers.It avoids the possibility of sharing of object state. The restriction can, of course,be lifted in some cases.Pointer structures within an object processor's memory, for example, are not verytroublesome, although in general garbage collection may be involved. Garbagecollection may be avoided by copying entire data structures instead of copyingpointers (intuitively this follows from the immutability of data structures; a moreformal treatment could follow [BvEG+87a]).In general, however, Paragon allows data structures to be passed in messages,and normally the intended meaning is that sharing of substructure occurs. Thisraises many problems for a hardware realisation.

6 Paul Anderson, David Bolton and Paul Kelly4. In any parallel composition of messages, the targets must all be di�erent (e.g.in o1 ! v1 k o2 ! v2, o1 and o2 must be di�erent).This avoids con
icts for access to communications channels.Since the names of objects may be carried in messages, this cannot be staticallydetected.These classi�cations and restrictions provide some insight into the nature of Paragonspeci�cations; we return to this topic in Sect. 5.4 Implementation schemesIn this section we discuss implementation schemes for Paragon speci�cations basedon the classi�cation and restrictions described in Sect. 3. First, we consider static,synchronous speci�cations and present a worked example for a fault tolerant routersystem. Then we discuss more complex issues arising when a speci�cation involvesasynchronous message passing and dynamic object creation (as exempli�ed by thepriority queue example).The translations presented are intended to preserve the semantics described in[BHK91]. However, the restrictions discussed already de�ne a particular treatment ofthe atomicity of pattern matching, and the schemes described in this section imposefurther decisions on, for example, the order of rule matching and the fair treatmentof spontaneous rules. These are key issues, of course, and we discuss them withinthe section and return to them in Sect. 5.4.1 Hardware implementation for static systemsWe begin by showing how static, synchronous Paragon speci�cations can be imple-mented using concrete, low-level constructions. To reinforce the low-level nature ofthis implementation we will describe the implementation in terms of a realisation indigital hardware.Each of the functions speci�ed in the Paragon system requires a feasible hardwareimplementation as follows:Objects. For each object in the system we create an object processor. This is a �nitestate automaton responsible for storing the state of the object, receiving mes-sages directed at the object, and in consequence executing appropriate actionsspeci�ed by the rules for the object.A direct hardware implementation is possible when the speci�cation is static sothat the number and kind of object processors can be determined.State. The state of each object is maintained in the corresponding object processor'slocal memory.We avoid the need to access remote object's local memory because we have onlyone-level pattern matching, and data objects do not contain pointers.Under these restrictions, data and objects share the same representation: a tupleis represented by a register containing a bit�eld for each component. If a com-ponent is in turn a tuple, its component bit�elds appear in-line. A constructorapplication is treated as a tuple whose �rst element is a small integer indicating

Paragon Speci�cations: Structure, Analysis and Implementation 7which constructor. Where alternative constructor applications may appear, thetuple size is that needed for the largest alternative.Communication. We provide a physical channel for every potential communicationbetween object processors. Each channel is implemented using enough wires toaccommodate the largest message sent, with messages represented as indicatedfor data. Connections are unidirectional, with the receiving object processoracknowledging receipt when it has accepted the message and executed the asso-ciated rules. An appropriate block of logic implements the alternative rules foreach message sort received.Determining potential communication paths is troublesome since Paragon allowsthe name of an object to be communicated in a message. The worst case wouldrequire a fully-connected network of channels, which is unacceptable: some kindof shared network would have to be introduced. Data
ow analysis can be usedto determine which objects can communicate with one another to avoid this inmost cases.This design leads to a translation scheme from Paragon to a hardware descriptionlanguage. To aid explanation we choose a form of Occam [Inm88] suitable for compi-lation to a silicon layout [MK87]. This paper shows how a suitable subset of Occamcan be used to provide a behavioural description for hardware devices, and howthis can be translated to a structural hardware description language de�ning buses,registers etc. The language used is Inmos' own `HDL'.We augment the Occam subset with enumerated and record types. These can bereadily translated to true Occam BYTE or other types to express the representationof state as described above. The PAR construct will appear only at the outermostlevel, with the assumption that concurrent processes are implemented using oneprocessing element for each process. For brevity, SEQs are omitted. Object processorswill be represented by Occam PROCs; we note [MK87] suggests that these can beimplemented by body substitution or by conventional closed procedure calls of known�xed depth.Communication will be through variant protocol channels de�ned between objectprocessors (one variant per message sort received). When the `name' of an objectis communicated in messages or stored in an object state it is represented by thechannel connected to its object processor. Each message sort received will also berepresented as a PROC called by the object processor.4.2 Object processorsA Paragon speci�cation consists of classes whose behaviour is described in terms ofguarded message-receipt and `spontaneous' rules. We must translate each set of rulesfor a class into an appropriate set of object processors dealing with both message-receipt and spontaneous rules (spontaneous rules have no given clause, so should beapplied whenever the object's state matches the LHS; see Sect. 2.1).The skeleton description for an object processor with both message-receipt andspontaneous rules is shown in Fig. 2. The processor is described in terms of an in-ternal record state and channel connections. Variant protocol channels in0,: : : ,inrrepresent incoming messages (one variant per message sort received by the ob-ject), with successful message receipt and execution signalled to the sender via the

8 Paul Anderson, David Bolton and Paul KellyPROC object-processor (CHAN OF Object-in in0,in1,: : : ,inr,CHAN OF BOOL sack0,sack1,: : : ,sackr,CHAN OF Object-out out0,out1,: : : ,outs)Object-state state :Set up channels etc as appropriateWHILE TRUEALT in0 ? message ; argumentsDeal with spontaneous rule if necessarycall procedure for message (pass state, and arguments)sack0 ! TRUE Acknowledgement to sender...inr ? message ; argumentsSimilar to in0TRUE & SKIPDeal with spontaneous rule if necessary:Fig. 2. Object processor descriptionsack0,: : : ,sackr channels. Channels out0,: : : ,outs represent objects to which messagesare sent during execution of the message procedures, and will be assigned to appro-priate internal object state components representing those objects.Fair treatment of `spontaneous' rewrites is ensured through polling both whenthere is no message receipt (`TRUE & SKIP' in the Occam idiom) and immediatelyafter each receipt.4.3 Messages and associated rulesConsider the Paragon rule for a message m that communicates n arguments x. Thisis de�ned in Paragon by a set of k rules, each of the form Rj , as follows (Sect. 2.1explains rules and rewrites in detail) :Sj given m(x)when Gj! S0j then Cjwhere BjWe must translate alternative rules for a given message into a procedure in the targetlanguage as follows:TM[R] maps a set of Paragon rules for a given message onto a procedure.TO[S] maps an object on the left-hand-side of a Paragon rule onto a set of state-ments that will both test if the current object matches and assign values to namesin the pattern match (if necessary). If the match is successful, a
ag success isset.

Paragon Speci�cations: Structure, Analysis and Implementation 9TB[B] maps a set of Paragonwhere bindings onto a set of appropriate assignments.TC[C] will map the set of message passes onto appropriate set of communicationsvia channels. We de�ne a variant protocol channel which implements one variantper message de�ned for a class, carrying the message arguments in the rest ofthe protocol.TG[G] will map the set of Paragon guards onto a logical expression. These guardswill operate not only on the variables bound by the message and on the state ofthe object, but also on the variables bound by the TO pattern-match and therequired subset of those bound by the TB where bindings.TS[S0] will map an object onto statements in the target language which will rewritethe state so that it appropriately represents the structure of that object.Figure 3 shows the result of TM[R] for a message with k rules communicating narguments x. The PROC has the same name as the message received and is de�nedPROC message-name (Object-state state, Typename x0,: : : ,Typename xn�1)BOOL success :TO[S0] Pattern matchIF success AND TG[G0] GuardsTB[B0] BindingsTS[S 00] Change stateTC[C0] CommunicationsTRUETO[S1]IF success AND TG[G1]: : : And so on to translations for k�1:Fig. 3. Result of translation function TM[R] for k rulesin terms of state, which represents the object receiving the message.Spontaneous rules have a similar translation to replace the phrase Deal withspontaneous rule if necessary in the object processor description (Fig. 2).4.4 ExampleThe static example is a simpli�ed version of a fault-tolerant packet-switched commu-nications router for WSI [AO88]. A router contains its address expressed as a tupleof its x and y coordinates on the wafer. As a result of an initialisation procedure,a router also records the status of its neighbours. A neighbour can be working, notworking (`dud'), or at the edge. A one packet bu�er is used to implement a storeand forward bu�ering mechanism to the receiving neighbour router. A packet carriesthe address of its destination and some status information as well as the payload.

10 Paul Anderson, David Bolton and Paul KellyThe packet operates in two modes, blocked or unblocked. While it is unblocked ittakes the shortest path to its destination. When it becomes blocked by encounteringa wall of faulty routers, it stores its displacement from its destination (the integer inthe packet type below), and follows the edge of the area of duds until it �nds it iscloser to its destination than when it became blocked.4.5 Paragon descriptionThe classes and data types required are as follows:class router ::= haddress,vector [North upto West] status,bu�ericlass bu�er ::= hvector [North upto West] router,packet,directionidata packet ::= haddress,handedness,blocked,integer,payloadidata address ::= hinteger,integeridata status ::= Good j Dud j Edgedata direction ::= North j East j South j Westdata handedness ::= Left j Rightdata blocked ::= Blocked j UnblockedThe route message takes as arguments the incoming packet and direction:ha, , i given route(ha, , , ,pi,) (Home)! self then action on reaching destinationhhx,yi,stat,bu�i given route(hhxd,ydi,h,b,s,pi,dir) (Unblocked)when stat [prim] = Good ^ jx-xdj + jy-ydj < s! self then bu� ! send(hhxd,ydi,h,Unblocked,999,pi,prim)where prim = primary(hx,yi,hxd,ydi)hhx,yi,stat,bu�i given route(hhxd,ydi,h,b,s,pi,dir) (Blocked)when jx-xdj + jy-ydj � s _ stat [prim] 6= Good! self then bu� ! send(hhxd,ydi,h',Blocked,s',pi,newdir)where prim = primary(hx,yi,hxd,ydi)In all of the above rules, the state of the router remains unchanged. The �rst rule(Home) is applicable when the packet has reached its destination address. The secondrule (Unblocked) matches when the packet is operating in unblocked mode, or whenit is closer to its destination than when it became blocked. The optimal forwarddirection is given by a table lookup performed by the function primary (for brevitynot de�ned here). This is then used to index into the vector of status registersand the vector of neighbouring routers. Rule (Blocked) matches when the packet isfollowing the boundary of the area of duds. In this rule newdir, h', and s' representnew direction, new handedness and new displacement respectively. The equationsde�ning these values appear in the where clause in a complete version; here theyare omitted.Two further rules for the class bu�er implement a simple store and forwardbu�ering mechanism:

Paragon Speci�cations: Structure, Analysis and Implementation 11hsroutes,nil,nili given send(pack,dir)! hsroutes,pack,dirihsroutes,spack,sdiri! hsroutes,nil,nilithen sroutes [sdir] ! route(spack,sdir)The second rule is `spontaneous'; it does not requires a triggering message. It de-scribes the forwarding action through a message-pass to the appropriate neighbourrouter identi�ed by indexing the vector of neighbours with the direction sdir storedin the bu�er. This allows inde�nite delay, thereby modelling asynchronous commu-nication between routers.An example comprising a four-connected wafer consisting of four routers arrangedas a square is shown in Fig. 4, together with the initial object con�guration whichrepresents it. For simplicity bu�ers are not shown in the diagram. To exercise therouting algorithm, in this example router d is non-functional. The vector of neighbourstates is given in the order [north,east,south,west].a = hh0,0i,[Edge,Good,Good,Edge],Baib = hh1,0i,[Edge,Edge,Dud,Good],Bbic = hh0,1i,[Good,Dud,Edge,Edge],Bcid = nilBa = h[nil,b,c,nil],nil,niliBb = h[nil,nil,d,a],nil,niliBc = h[a,d,nil,nil],nil,nilic(0,1) d(nil)a(0,0) b(1,0)6? 6?-� -�Fig. 4. A simple speci�cation4.6 Translation to OccamWe analyse the router example to determine the interconnection topology of the sys-tem of required object processors and then apply the translation scheme to the rules.The object processors and topology are trivially given by the following equations:a 2 S(fBa;Pag) Ba 2 S(fb; cg) b 2 S(fBb;Pbg) Bb 2 S(fa; dg)c 2 S(fBc;Pcg) Bc 2 S(fa; dg) d 2 S(;)There will normally be one variant per message sort de�ned for a class. In thisspeci�cation routers receive the single message route, and bu�ers the single messagesend, so the associated protocols therefore contain one variant only:

12 Paul Anderson, David Bolton and Paul KellyPROTOCOL Bu�er-in-Router-outCASE send ; Packet ; Direction :PROTOCOL Bu�er-out-Router-inCASE route ; Packet ; Direction :RECORD Bu�er-state IS[North..West] CHAN OF Bu�er-out-Router-in sroutes; Packet spack; Direction sdir :RECORD Router-state ISAddress addr; [North..West] Status stat; CHAN OF Bu�er-in-Router-out bu� :The bu�er state is represented by a record, with the four router objects implementedby channels to the appropriate router object processors. Other type declarations areobvious and omitted.Figure 5 shows the translation to an object processor for class bu�er. The bu�erPROC bu�er-processor(CHAN OF Bu�er-in-Router-out input,CHAN OF BOOL bsack,CHAN OF Bu�er-out-Router-in N,E,S,W)Bu�er-state state :Packet pack :Direction dir :state.sroutes [North..West] := [N,E,S,W] Connect up channelsWHILE TRUEALT input ? send ; pack ; dirsuccess := state.spack <> nil AND state.sdir <> nil SpontaneousIF successstate.spack := nilstate.sdir := nilstate.sroutes[state.sdir] ! route ; state.spack ; state.sdirTRUESKIPsend (state,pack,dir)bsack ! TRUETRUE & SKIPsuccess := state.spack <> nil AND state.sdir <> nilIF successstate.spack := nilstate.sdir := nilstate.sroutes[state.sdir] ! route ; state.spack ; state.sdirTRUESKIP:Fig. 5. Object processor for bu�erprocessor is connected to a maximum of four routers, one in each direction, and has

Paragon Speci�cations: Structure, Analysis and Implementation 13one incoming connection.Figure 6 shows the translated PROC for message route. The bu�er is representedby a connection to the appropriate bu�er object processor through a channel witha variant protocol for the single message send.PROC route (Router-state state, Packet pack, Direction dir)BOOL success : INT disp : Direction prim :disp := abs(state.addr.x{pack.addr.y)+abs(state.addr.y{pack.addr.y)prim := primary(state.addr,packet.addr) Same in both rulessuccess := state.addr = pack.addrIF successaction on reaching destinationTRUEsuccess := TRUE No pattern match hereIF success AND state.stat[prim] = Good AND disp < pack.disppack.blocked := Unblockedpack.disp := 999state.bu� ! send ; pack ; primTRUEsuccess := TRUEIF success AND disp >= pack.disp AND state.stat[prim] <> GoodCompute new direction newdir, pack.disp, pack.handpack.blocked := Blockedstate.bu� ! send ; packet ; newdirTRUESKIP:Fig. 6. Translation of the router example4.7 General systemsThis section addresses the complex question of how to implement Paragon speci�-cations whose rules use asynchronous message passing and dynamic object creation(for example, the parallel priority queue in Sect. 2.2).One approach to dynamic spec�cations involves analysis to make assumptionsabout the scope of the required system and possible modi�cation of the speci�cationto make it more amenable to hardware implementation. This is followed by de�nitionof object processors for objects in the dynamic class to match these assumptions. Inthe case of the priority queue, for example, we mightmodify the rules for get to `shuf-
e up' queue entries leaving an `empty' entry at the end of the queue. The speci�edbehaviour then more closely matches that of a feasible hardware implementation.

14 Paul Anderson, David Bolton and Paul KellyA second approach we describe in more detail de�nes a source-to-source Paragontransformation to produce a static synchronous speci�cation which can then betranslated as de�ned in Sect. 4.1. We do not suggest particular implementations butdescribe additional static synchronous systems which are suggestive of conventionalsolutions using bu�ers and heaps. Implementation of the more complex communi-cation characteristics produced by the transformations might be (in Occam terms)through passing of indices to shared arrays of channels among the processes.4.8 Asynchronous message passingWe introduce new objects called task pools which will bu�er asynchronous com-munications. All asynchronous communications can be transformed to synchronouscommunications to a task pool. A task pool is made up of a list of tasks, where atask is de�ned as a destination, a message and a list of arguments. A task pool canbe de�ned as a synchronous Paragon class receiving the single message add-task. Allasynchronous communications, for example a !! m(x), can be translated into T ! add-task(a,m,x), where T is a task-pool. A task pool is required for every object that isasynchronous in any other object. Each task pool associated with an object o mustbe shared with (i.e. connected to) every object in which o is asynchronous.4.9 Dynamic speci�cationsWe transform all classes known to be dynamic to use a heap to store instances of theclass. Each heap will be speci�c to its class. Individual objects will then be identi�edby their place in the heap. New objects will be created by allocating a place in theheap. If the speci�cation contains a dynamic class c, we must implement this classwith two new objects in the initial state: H(c) which represents the heap for objectsof class c; and P (c), known as the class processor for c, which will implement therules for class c.All objects dynamic in c must be connected synchronously to H(c), and allobjects synchronous (asynchronous) in c must be connected synchronously (asyn-chronously) to P (c).The heap object receives four messages: new(a), which allocates space for thestate of an object and assigns the name-tag for the allocated space to a; free(a),which frees the space with name-tag a; read(x,a), which reads the current object atname-tag a into x; and write(a,x), which rewrites the object at the name-tag a tostate x.The class processor P (c) is a static object to which all messages sent to objectsof class c are delivered. Objects of class c are identi�ed by their name-tag in H(c),so the operation of P (c) when it receives a message will be to read the state of theobject from H(c), execute the appropriate message procedure, and write the objectback if it has been rewritten. Class processors can be de�ned in the descriptionlanguage in the same way as object processors.The transformations required on a speci�cation to incorporate heaps and classprocessors for a dynamic class c in a set of classes C with a typical object aare as follows. All synchronous communications a ! m(x) must be transformed intoP (c) ! m(a,x). All asynchronous communications a !! m(x) must be transformed into

Paragon Speci�cations: Structure, Analysis and Implementation 15T ! add-task(P (c),m,(a,x)), where T is the task pool for C. Bindings containing dy-namic object creation through new must be transformed to communicate with theheap associated with the class being allocated, soa = new (c, initialstate)must be transformed into the added communicationsH(c) ! new(a); H(c) ! write(a,initialstate)where a is the bound name for the new object in the current rule.5 ConclusionOur main purpose in this work was to remove a weak link in the earlier papersapplying Paragon to describe the implementation of parallel graph reduction. Theobjective there was to show how, by a sequence of re�nements, a parallel computerarchitecture could be derived from a speci�cation of its primitive operations as aterm rewrite system [BHK91].The most interesting outcome of the implementation e�ort has been a much moredetailed understanding of the structure of Paragon speci�cations. This was manifestin the classi�cation and restrictions we imposed on speci�cations, which seem toidentify key issues in any analysis of parallel systems implementation.For static systems, in addition to the restrictions discussed earlier, we observethat, for a perfectly fair implementation, the given translation requires that exactlyone rule be applicable given a particular set of incoming messages (including theempty set, to include spontaneous rewrites). This is rather a strict constraint. Es-sentially it arises because each object processor has no internal parallelism, so canonly test for the applicability of one rule at once, in a predetermined order. This isa generalisation of the rewriting notion of sequentiality. As in functional program-ming, it very often turns out sequential order of testing is adequate for a particularapplication. Unlike in the term-rewriting case, the restriction to sequentiality doesnot result in a deterministic language, since racing between messages can still occur.We dealt with asynchronous messages and dynamic object creation using asource-to-source Paragon transformation as described in Sect. 4.7. The introduc-tion of \task pools" implies implementation of bu�ering (lists are used to modelbu�ers in Paragon speci�cations)|as usual this must be shown to be e�ective (noover
ow, etc) for the application concerned. Of course, garbage collection for dy-namic objects is also involved (except in very special cases), and in general this mayrequire cooperation between many of the \class processors" introduced.To conclude, this paper addressed the problem of bridging the �nal gap betweena low-level Paragon description of an architecture, and the hardware itself. Our ex-perience has been that in the static case the translation is direct enough to supportthe view that Paragon programs specify hardware, but that for dynamic and asyn-chronous speci�cations non-trivial design decisions must be made. The fact thatthese decisions can be expressed within Paragon lends further support for our useof the language in layered architectural design of parallel systems.

16 Paul Anderson, David Bolton and Paul KellyReferences[AO88] Paul Anderson and Peter Osmon. A Fault Tolerant Communications Archi-tecture for Wafer Scale Integration. In Proceedings of the Alvey TechnicalConference, pages 504{507, 1988. City University TCU/CS/1988/13.[BHK89] David Bolton, Chris Hankin, and Paul Kelly. Parallel object-oriented descrip-tions of graph reduction machines (extended abstract). In PARLE'89 ParallelArchitectures and Languages Europe, pages 158{175. Springer Verlag, 1989.[BHK90] David Bolton, Chris Hankin, and Paul Kelly. Parallel object-oriented descrip-tions of graph reduction machines. Future Generations Computer Systems,6:225{239, 1990.[BHK91] D. Bolton, C.L. Hankin, and P.H.J. Kelly. An operational semantics forParagon: A design notation for parallel architectures. New Generation Com-puting, 9:171{197, 1991.[BvEG+87a] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway,M.J. Plasmeijer, and M.R. Sleep. Term graph rewriting. 1987. In [dBNT87,pages 141{158].[BvEG+87b] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway,M.J. Plasmeijer, and M.R. Sleep. Towards an intermediate language for graphrewriting. 1987. In [dBNT87, pages 159{174].[dB89] J.W. de Bakker, editor. Languages for Parallel Architectures. Parallel Com-puting. Wiley, 1989.[dBNT87] J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors. Parle, ParallelArchitectures and Languages Europe, volume I. Springer Verlag, June 1987.LNCS 258.[GKS87] J.R.W. Glauert, J.R. Kennaway, and M.R. Sleep. Dactl: a computationalmodel and compiler target language based on graph reduction. Report SYS-C87-03, school of Information Systems, University of East Anglia, 1987.[Inm88] Inmos Ltd. Occam-2 Reference manual. Prentice Hall International, 1988.[MK87] David May and Catherine Keane. Compiling occam to silicon. Technicalnote 23, Inmos Ltd., 1000 Aztec West, Almondsbury, Bristol BS12 4SQ, UK.,1987.[SJ89] Ph Schnoebelen and Ph Jorrand. Principles of FP2: Term Algebras for Spec-i�cation of Parallel Machines. 1989. In [dB89, pages 223{273].[Tur85] D.A. Turner. Miranda: A non-strict functional language with polymorphictypes. In Functional Programming Languages and Computer Architecture,Nancy, France. Springer Verlag, 1985. LNCS 201.
This article was processed using the LaTEX macro package with LMAMULT style

