
GILK: A dynami instrumentation tool for theLinux KernelA. Nonymous, B. Nonymous, C.NonymousNo Institute GivenAbstrat. This doument desribes a novel instrumentation tool for theLinux Kernel and Intel x86 arhiteture. We desribe how the tool allowsa stok Linux kernel to be modi�ed while in exeution. A onvenientgraphial interfae allows the user to browse the ontrol-ow graph ofeah kernel funtion, and insert user-spei�ed instrumentation before orafter any basi blok. The instruments are implemented as kernel modulesand, as suh, are written in `C' with aess to all parts of the kernel. TheIntel x86 arhiteture poses a partiular problem, due to variable lengthinstrutions, whih this paper addresses for the �rst time. We evaluatethe potential of the tool for performane instrumentation, and ompareit with an alternative. Finally we present a short ase study illustratingits use in understanding i/o behaviour in the kernel. The soure ode isfreely available for download.1 IntrodutionIn this paper we desribe an instrumentation tool alled GILK that has beendeveloped spei�ally for the Linux Kernel. It permits sensitive instrumentationode to be added to an unmodi�ed kernel in exeution with low instrumentationoverhead. This is ahieved through an implementation of runtime ode spliing,whih allows arbitrary ode to be inserted before most mahine instrutions inthe kernel without a�eting its behaviour.Currently the tool works only for kernels running on the Intel x86 arhite-ture, although in priniple there is no reason why it ould not work on others.Through a graphial based interfae (see Figures 1,2), the user may hoose howand where to instrument, when to begin and end individual instruments andwhat to do with the information produed by them.We have found it to be useful in a variety of appliations, inluding measure-ment of disk and network ativity. In the latter, it has been used to show thata \power law" exists in network traÆ (see setion 4.4). We have also veri�edthe orretness of the tool by omparing results with those generated by anotherinstrumentation pakage, IKD [1℄. We make the following ontributions:{ An implementation of runtime ode spliing for the Intel x86 arhiteture isoutlined.{ A new tehnique for ode spliing, alled loal boune alloation, is desribed.

Fig. 1: Illustrating the main window of GILK. In the upper pane, the kernel symbolsare shown with markers indiating the result of the analysis performed on them. Thetriangle marker shown indiates that the analysis was unable to omplete. This maybe, for example, as a result of �nding an instrution that ouldn't be understood byGILK's disassembler. In the bottom pane, we see the instruments that make up theurrent experiment. They will not be ativated until some point after the experimentis begun.{ The auray and overhead of the spliing method is evaluated throughexperimental work.The remainder of this paper is as follows. Setion 2 will briey examinesome of the related work. Setion 3 will overview the implementation behind theinstrumentation tool, while setion 4 will examine some experiments performedusing the tool. Setion 5 will onlude.2 Related WorkMuh of the foundation for this projet has been laid by Tamhes, et al. [15,16, 14℄. They have developed the KernInst dynami instrumentation tool for the

Fig. 2: Illustrating a ontrol-ow graph generated by GILK. It is displayed using thegraph visualization tool daVini [5℄. The graph for any kernel symbol is aessible viaa menu option on the main window.Solaris kernel and UltraSpar arhiteture. It works in a very similar fashion toGILK, with two notable exeptions. Firstly, it performs a more aggressive analy-sis of kernel symbols, in partiular an interproedural live register analysis. Thisattempts to minimise the impat of instrumentation through unused registers.Seondly, the tehniques it uses are geared towards a �xed length instrutionset and a multi-threaded kernel. In ontrast, the Intel x86 arhiteture uses avariable length instrution set and the Linux kernel is single threaded. Thesetopis will be disussed in more detail in setion 3.1. The main illustration oftheir tool in use is through the performane study of a web proxy server, wherea design aw is identi�ed.Another dynami instrumentation tool is Paradyn [11, 6℄, whih instrumentsuser programs. Paradyn's approah is somewhat di�erent to KernInst, in that itensures safety by walking the stak before eah ode splie. This auses a per-formane overhead, whih would be a problem only if instruments are ativatedfrequently.Binary rewriters suh as QP/QPT [8℄, EEL [9℄, BIT [10℄ and ATOM [13℄introdue instrumentation ode by modifying the exeutable statially. This is,arguably, a safer approah than runtime modi�ation. But it is more umber-

some, espeially for kernels, as it is often unlear what needs to be instrumentedbeforehand. With a dynami system one an quikly swith between di�erentinstruments before settling on the right one. On the other hand, for a binaryrewriter operating on a kernel one either instruments many symbols in one go,hoping to ath some information of interest, or endures a large number of sys-tem reboots as the exploration proeeds. In the former ase, the experiment mayalso need to be rerun with a narrower instrument set in order to redue the per-formane impat imposed. Finally, the stati approah prevents instrumentationof systems that annot be restarted.It is our belief that GILK provides a more pratial solution to instrumen-tation than Binary Rewriting. This stems from the fat that, being a dynamisystem, it is more suited to the exploratory nature of performane monitoringand debugging. Nonetheless, the tehniques used in stati rewriters are extremelyrelevant to this work.There are a number of existing instrumentation pakages for the Linux Ker-nel. These inlude the IKD path [1℄ and KernProf [2℄. These are both imple-mented as kernel pathes and, therefore, need to be applied to the kernel soureand then ompiled. In both ases, instrumentation is inserted by ompiling withthe `-pg' swith of GCC. This provides a rather oarse form of instrumentation asall symbols within a �le ompiled with `-pg' will be instrumented. Additionally,it is diÆult to target instrumentation without �ddling around with the kernel'sbuild proedure. KernProf is the more powerful of the two and is apable ofstatistial sampling, all path traing, all ounting and more.Statistial sampling is another valuable tehnique for instrumentation. DCPI[3℄ provides a good example of this. Suh systems arrange for the target to beinterrupted infrequently, so that the Program Counter (or other registers) anbe reorded along with a timestamp. Thus, a piture of where the programis spending its time will emerge as more samples are olleted. Typially thismethod has a very low overhead and it is true that this will almost always beless than that of GILK. However, statistial sampling is also somewhat limitedin the data that it an reord. For example, funtion exeution times an onlybe approximated. But, we do not dismiss statistial sampling. Instead, we feelthat it is omplimentary to dynami instrumentation and GILK.3 GILK OverviewThe GILK tool onsists of two main omponents: the devie driver (alled ILK)and the lient. The lient does the majority of the work, whilst the devie driversimply provides the lient with aess to kernel spae. The lient begins with asanning phase where all kernel symbols are examined in turn. For eah symbol,the tool attempts to determine whether it is safe to instrument or not, whihinvolves generating the Control Flow Graph and performing some rudimentaryanalysis (see setion 3.5). This also helps identify any data symbols whih annototherwise be distinguished. Those whih are determined to be unsafe are thenmarked in the GUI and bloked from instrumentation. The user is then permitted

ILK

instrument

iid=1

instrument

iid=3

instrument

iid=2

kernel space

user space

collector

/dev/ilk

Fig. 3: Illustrating how samples ow through the system. As the kernel exeutes, theinstruments obtain ontrol and log their samples with the devie driver. A user spaeproess, the olletor, periodially empties this bu�er into user spae via the devieinterfae /dev/ilk. In turn, the olletor writes the samples to disk.to speify what instrumentation should take plae. This amounts to hoosingtarget loations, seleting instruments for them and speifying start and �nishtimes. The tool supports staggered launhing and termination of instruments toprovide greater exibility and to help redue the impat on kernel performane.The tool itself is apable of adding a pre-hook or a post-hook instrumentto any basi blok within a funtion. A pre-hook instrument is one that getsexeuted before the �rst instrution of a basi blok. A post-hook instrumentis exeuted after the last non-branhing statement of a basi blok. Hene, atarget loation onsists of a symbol, an identi�er and a ag indiating a pre-or post-hook instrument. The proess of assigning instruments to loations ishelped by the use of strategies, whih apture typial instrumentation plans.For example, one strategy is to insert the same pre-hook instrument to eahbasi blok. This would be useful for exeution path traing. Another is to plaea pre-hook instrument before the �rst basi blok and a post-hook instrumentafter eah terminating blok. If the instrument reorded timestamps we wouldbe able to measure exeution time for the funtion in question.Figure 3 provides an overview of the sample generation and olletion phase.Eah of the instruments is assigned a unique identi�er (iid) whih they log, alongwith any additional data, to the devie driver. The devie driver bu�ers thesesamples and a user spae proess, the olletor, periodially opies them fromkernel spae via the standard UNIX devie interfae. They are then written to

before aftermovl 60(%esp,1),%ex jmp pathtestb $0x10,%h db 5jz 24 db 10: : : next:jz 24: : :path:pushpushalpushl $iidall instrumentaddl $4,%esppopalpopmovl 60(%esp,1),%extestb $0x10,%hjmp nextFig. 4: Illustrating before and after a ode splie. What we an see is that in the seondode sequene the branh instrution has been plaed over the �rst two instrutionsof the original. This has made two bytes redundant, as they are no longer in the owof ontrol. The path itself forms a pre-hook instrument with the two overwritteninstrutions reloated to the bak.disk. The user spae lient keeps a reord of the ative instruments so that thekernel an be safely restored to its original form.3.1 Code SpliingThe aim behind ode spliing is to plae a branh instrution (the splie) atthe target loation (the splie point) onneting to the instrumentation ode.Clearly, the branh will overwrite a number of instrutions and, therefore, thosea�eted are �rst reloated into a ode path. The splie points to this ode pathwhih ontains any reloated instrutions, ode to save and restore the mahinestate and a all to the instrument funtion itself. This is illustrated in Figure 4.For a �xed length instrution set, this works pretty muh as is. However,for a variable length instrution set, suh as the Intel x86, there is a slightompliation. The branh instrution used is 5 bytes in length. However, aninstrution may be as small as a single byte in length. Therefore, it is entirelypossible that the branh may overwrite more than one instrution. Now, onsiderwhat will happen if, for example, the seond instrution is the target of a branhelsewhere in the ode. When that branh is taken, ontrol will be passed intothe middle of the splie and not to the original instrution! It is for this reasonthat GILK must generate the Control Flow Graph for eah symbol. With thisknowledge the above problem an be redued to saying that it is unsafe toplae the splie aross a basi blok boundary. In fat, GILK is slightly more

before afteropode instrution opode instrution55 pushl %ebp e9b1080000 jmp 011691857 pushl %edi 4424 (unused)56 pushl %esi 244f (unused)53 pushl %ebx 4fff (unused)74424244f4ffffff move $���f4, 36(%esp,1) ffff (unused)Fig. 5: Illustrating eight bytes that are free for use as a loal boune. These unusedbytes stem from the fat that the branh instrution has ompletely overwritten the�rst four instrutions and the �rst byte of the �fth.restritive than this, by allowing only pre-hook and post-hook splies. This issimply to make the number of target loations more manageable.There is, however, a seond problem with variable length arhitetures thatis similar to the �rst. This time, onsider what happens if a thread is suspendedat an overwritten instrution. Again, when the thread awakens, ontrol ould bepassed into the middle of a branh. At this point, the methodology of the LinuxKernel omes to the resue. There are three main points:{ A proess exeuting in kernel spae must run to ompletion unless it volun-tarily relinquishes ontrol. This means that when a proess is in kernel spaeit will not be sheduled o� the proessor when its timeslie expires.{ Proesses running in kernel spae may be interrupted by hardware interrupts.Although this may appear to ontradit the �rst rule, it does not beauseontrol is always returned to the proess. Additionally, it is possible to pre-vent interrupts from ourring in spei�ed setions of ode.{ An interrupt handler annot be interrupted by a proess running in kernelspae. This fat ensures that any proess exeuting in kernel spae alwaysregains ontrol after the interrupt and before any other proess.These three points, taken together, allow us to overome the remaining problemwith variable length instrution sets. Firstly, the ability to blok interrupts meansthat the devie driver an write the branh instrution to any part of the kernelatomially. Seondly, although a proess may relinquish ontrol it an only do sothrough indiretly alling the shedule() funtion. This means that, so long aswe don't instrument this funtion, the sleeping thread problem an be ignored.Further disussions on these topis an be found in [4℄.3.2 Loal BouningThere is an interesting problem with the use of a �ve byte branh instrutionfor spliing: A basi blok may be less than �ve bytes in length! In this ase, weannot use suh a large branh instrution, without straddling a blok boundary.However, the Intel instrution set also supports a two byte branh instrution,whih has a range of only -128 or +127 bytes. In general, this is not enough toreah the ode path.

instrument
code

return
branch

relocated
instructions

(a) pre-hook return
branch

relocated
instructions

instrument
code

(b) post-hook return
branch

instrument
code

instrument
code

relocated
instructions

() pre-post-hookFig. 6: Illustrating the three path on�gurations. In the pre-hook ase, the reloatedinstrutions from the original ode sequene are plaed after the instrumentation ode.In the post-hook ase the reverse is true and for the pre-post-hook it sandwihes thereloated instrutions.Therefore, GILK attempts to plae a �ve byte branh to the instrumentwithin this limited range. This is termed bouning. The problem, then, is whereto position these bounes. Due to the nature of the Intel instrution set it isquite often the ase that boune sites are made available by splies for otherinstruments. This is illustrated in Figure 5. GILK will attempt to use any ofthese \free" boune sites when possible. If none are available then GILK willreloate instrutions solely for the purpose of �nding spae.This strategy is termed loal boune alloation beause GILK only attemptsto alloate bounes within the funtion being instrumented. It is a novel featureof the tool.3.3 The Code PathThere are three on�gurations for the ode path: pre-hook, post-hook and pre-post-hook. In the �rst ase, the instrumentation ode is positioned before thereloated instrutions. This is the on�guration used in the ode path fromFigure 4. In the seond ase, the instrumentation ode is loated after the re-loated instrutions. An exeption to this ours when the last instrution is abranh or return. In this ase, the instrumentation ode is sandwihed betweenthe main body of reloated instrutions and the last one. The �nal ase ourswhen the entire basi blok must be reloated and both pre-hook and post-hookinstruments are requested on it. Figure 6 illustrates these on�gurations.The ode path is atually assembled in GILK from strings of assembly lan-guage representing the reloated instrutions and the instrument ode. The relo-ated instrutions are passed through a �lter whih �xes up any that are Program

Counter dependent. This may be as simple as adjusting the relative address or itmay require a new instrution. The �nal assembly string is then passed throughthe GNU assembler `as' and linked using the GNU BFD objet �le library toprodue mahine ode, whih an then be uploaded into kernel memory.3.4 Instrument FuntionsThe instruments themselves are implemented as kernel modules, as this simpli�essome of the dynami linking issues. Eah instrument module initially registersitself with the ILK devie driver, providing a pointer to the instrument funtion.The instrument funtion aepts, as parameters, at least the unique identi�erand possibly other arguments depending upon whih ode path template wasused. An example funtion is:void simple_instr(unsigned int iid) {ilk_log_integer_sample(jiffies,iid);}This funtion simply logs the value of the global variable \jiÆes" when it isalled. This is interesting beause, being a kernel module, it has aess to all thestrutures of the kernel whih is an report on. Also, being written in `C' meansthat quite omplex instrument funtions an be onstruted.3.5 Indiret branhing and other issuesIndiret branhing is a problem for the GILK tool. This is beause a dataowanalysis is required in order to generate the Control Flow Graph. GILK performsno suh analysis and, therefore, it annot onlude anything regarding the desti-nation of indiret branhes. Hene, a symbol whih ontains an indiret branhannot be safely instrumented under GILK. In pratie this is not muh of aproblem as indiret branhes are rare. These problemati symbols are unoveredin the analysis phase of the tool and marked in the GUI.4 Experimental ResultsThis setion will over some of the experimental work performed with the GILKtool.4.1 Correlation with IKDIKD [1℄ is a set of utilities that instrument ertain aspets of the Linux Kernel.It is supplied as a kernel path that must be applied to the soure tree beforeinstrumentation an be performed. The tool supports a number of di�erent in-strumentation modes. However, for the purposes of this experiment only the\ktrae" mode is of interest. This mode provides all traing of kernel funtions

and reords the program ounter, a timestamp and (optionally) a proess iden-ti�er. The auray of the timestamp depends upon the host arhiteture. OnIntel x86 systems, the RDTSC instrution is used, whih provides timestampsmeasured in lok yles.The mode is implemented through use of GCC's \-pg" ompiler swith. Thismode inserts a all to \mount()" at the beginning of eah funtion. Normally,the ode for mount() is provided by the standard C libraries. However, theLinux Kernel is not linked with them and, instead, the IKD path provides animplementation whih reords the required data into a yli bu�er. The sizeof this bu�er is determined at ompile time and overow results in the oldestsamples being overwritten.The method employed by IKD has some impliations upon the granularityof funtions whih an be instrumented. Out-of-the-box, IKD is on�gured toinstrument every funtion in the kernel. This generates a tremendous amountof data and plaes a signi�ant overhead on the kernel. More importantly, theinternal bu�er overows regularly, meaning a signi�ant number of samples arelost. In order to make a omparison with GILK, it was neessary to redue thenumber of funtions being instrumented by IKD. This was ahieved by simplyremoving the \-pg" swith and plaing the alls to mount() manually aroundthe funtions in question, whih allowed an unbroken sample set to be generated.The Experiment The idea behind this experiment was to get both tools toreord the time at whih eah event, from a known sequene of events, tookplae. Therefore, the kernel funtion \sys fork()" was seleted as it is alledinfrequently during the normal ourse of events. A simple `C' program, alledPulsar, was written whih would invoke sys_fork() in a ontrolled fashion. Theode for Pulsar is illustrated in Figure 7.The experiment was performed on a Pentium 120Mhz running Linux 2.0.36.The results are illustrated in Figure 8. It shows two sample sets, with eahsample being a timestamp and a sequene number. The timestamps are relativeto the start of eah sampling period and indiate when a all to sys_fork() wasmade. The sequene number indiates whih fork() statement in Pulsar ausedthe timestamp. In total, Pulsar generates 96 fork() alls and, so, the sequenenumbers range between 0 and 95. The graph has a distint step shape whihis aused by the sleep(5) all in Pulsar and it should be fairly lear that theresults are nearly idential between IKD and GILK.4.2 Performane OverheadThe aim of this experiment was to quantify the overhead aused by instrumenta-tion. This was ahieved by measuring the time taken to exeute a setion of odewith and without an instrumentation applied to it. The setion of ode hosento be timed was \do fork()", whih is alled by sys_fork(), and the instrumentto be measured was a simple timestamp reorder.The experiment onsisted of the ontrol and ative phases. In the ontrolphase, exeution times for sys_fork() were measured when no instrumentation

#inlude <stdio.h>#inlude <unistd.h>int main(int arg, har *argv[℄){ int pidarray[32℄,i,j,status;for(j = 0; j < 3; j++) {for(i = 0; i < 32; i++) {if((pidarray[i℄ = fork()) == 0) {exit(0);}}sleep(5);for(i = 0; i < 32; i++) {waitpid(pidarray[i℄,&status,0);}}exit(0);}Fig. 7: Showing the `C' ode for the Pulsar program, along with the phases of exeution.

0

10

20

30

40

50

60

70

80

90

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09 1.6e+09 1.8e+09 2e+09

sy
s_

fo
rk

 c
al

l n
um

be
r

time in cycles

GILK
IKD

Fig. 8: Illustrating a orrespondene between the results of IKD and GILK as the twolines overlap almost perfetlywas applied to do_fork. In the ative phase, the simple instrument was added toevery basi blok of do_fork() and the exeution time was reorded as before.The Pulsar program was used to drive sys_fork() and the results an be seen inFigure 9. Again, the mahine used was a Pentium 120Mhz running Linux 2.0.36.

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 20 40 60 80 100 120 140 160

ex
ec

ut
io

n
tim

e
in

 c
yc

le
s

sequence number

active
control

Fig. 9: Illustrating the performane overhead imposed by GILK for a partiular exper-imentThe graph shows a distint vertial skew between the two sample sets. Mea-suring between the baselines of eah set, the di�erene is around the 30,000 ylemark, whih is slightly less than the total exeution time of the funtion. Giventhat there were 94 basi bloks, we an reason that the overhead per instru-ment is around 300 yles. This is reasonable for many purposes and ould beimproved in a more re�ned prototype.To see how these yles are spent we must examine what the simple instru-ment does. Firstly, it must save and restore the state of the proessor whihis ahieved via the pushal, pushfl, popal and popfl instrutions. Next, theinstrument identi�er and a timestamp (obtained via the rdts instrution) areplaed on the stak and a all made to the instrument funtion. This then logsthe timestamp with the devie driver and returns. For a pentium system, thestate saving instrutions only aount for seventeen yles and the ost of thefuntion all will be similar. Therefore, we onlude that the majority of the over-head is spent in the devie driver, adding samples to the bu�er. This suggeststhat the bene�ts of live register analysis would be negligible without dramatiimprovements to the sample logging proess.4.3 Pipe BlokingThis experiment provides a simple ase study to show GILK being used to un-derstand kernel and proess behaviour. The idea behind it was this: suppose wehave a series of UNIX ommands onatenated with the \pipe" operator and wewish to determine whih of the ommands is the bottlenek. One way of usingGILK to determine this is by instrumenting the kernel symbol pipe_write. Partof the ode for this symbol is:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10

ca
ll

co
un

t f
or

 in
te

rr
up

tib
le

_s
le

ep
_o

n

time in cycles

cat vol_dump
sed -e "s/\(.\)\/\(.\)/\2#\1/"

grep -a " "

Fig. 10: Showing the results from the pipeline experiment. Firstly, note that the datafor \sed" and \grep" form an almost straight line aross the bottom. The graph tellsus that the \at" proess is making a large number of alls to interruptible sleep on()in a periodi fashion, whilst the other proesses are making view. This suggests that\sed" is the bottlenek for this pipeline.while ((PIPE_FREE(*inode) < free) || PIPE_LOCK(*inode)) {...interruptible_sleep_on(&PIPE_WAIT(*inode));}The funtion interruptible_sleep_on() puts the proess to sleep, pending awake up all from the pipe reader. So, the above an be simpli�ed to saying thatthe proess is put to sleep when there isn't enough spae in the bu�er or the pipeis loked by a reader. Therefore, it is reasonable to assume that a proess in apipeline will make a lot of alls to interruptible_sleep_on() if it is produingdata faster that it an be onsumed.To measure this, GILK was used to plae a pre-hook instrument on the ba-si blok whih makes the all to interruptible_sleep_on(). The instrumentreorded the Proess ID and a timestamp. A large �le, alled \vol dump" wasreated with random data and the following pipeline used:% at vol_dump | sed -e "s/\(.\)\/\(.\)/\2#\1/" | grep -a " " | sortThe results an be seen in Figure 10. They indiate that the \at" proess ismaking a large number of alls to interruptible_sleep_on()whilst the othersare making relatively little. This means that \at" is produing data faster thanit an be onsumed and this is ausing it to blok. The suspiion is, therefore,that \sed" is the bottlenek for this pipeline.If this was the ase then we would expet that proesses after it wouldbe bloking on their read operations. To on�rm this a seond experiment

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10 1.4e+10 1.6e+10

ca
ll

co
un

t f
or

 in
te

rr
up

tib
le

_s
le

ep
_o

n

time in cycles

sed -e "s/\(.\)\/\(.\)/\2#\1/"
grep -a

sort

Fig. 11: Showing the results from the seond pipeline experiment. This time the numberof times pipe read is bloking is being measured. What the graph shows us is that theproesses after \sed" in the pipeline are bloking a lot but sed is not. This on�rmsthe suspiion that \sed" is the bottlenekwas performed in whih the pipe read operation was monitored for alls tointerruptible_sleep_on(). The results from this are shown in Figure 11 andthey show that all proesses in the pipeline after \sed" are bloking whilst wait-ing for data to be produed. Hene, the onlusion that \sed" is the bottlenekseems reasonable.4.4 Network TraÆ AnalysisThe experiments outlined in this setion form part of ongoing researh intoself-similarity at INSTITUTE. This partiular experiment used GILK to in-vestigate the properties of arti�ial network traÆ. For this purpose a simplemulti-threaded JAVA server was onstruted that transferred data aross thenetwork to a number of lients.The experiment requires that the arrival times of network pakets be reorded,so that the inter-arrival times an be omputed. The unix utility tpdump wasinitially used for this purpose, but it was later disovered that inter-arrival timesof zero were being measured. Clearly, this is a mistake and it was unlear whetherthe generated power spetra were a�eted. Thus, GILK was deployed to on�rmthat inter-arrival times of zero were not real and to asertain how this featureof tpdump had a�eted the original data.The exibility that GILK provides was key to the suess here. It was usedto instrument funtions within the Linux TCP/IP stak as well as the ethernetdriver. This veri�ed that tpdump was produing some erroneous results and,through omparison of power spetra generated by GILK and tpdump, it was

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6 7

lo
g1

0(
pd

f)

log10(binsize in microseconds)

gilk
tcpdump

Line with slope -2.6

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g1

0(
P

ow
er

)

log10(Frequency in Hz)

tcpdump
gilk

Line with slope -1.6

Fig. 12: These plots show a omparison of the histograms (left) and power spetrabased on data from GILK and tpdump. The graph on the right indiates the preseneof a power law. This is beause a reasonably straight line is present in the �rst half ofthe plot. The plots are similar enough to provide a good veri�ation of data produedby GILK. We would not have expeted them to be idential. For this experiment sixtylients were onneted to the server.onluded that there was negligible distortion on the original data. Figure 12illustrates the omparison.The signi�ane of the power spetra and self-similarity in general are beyondthe sope of this paper and the reader is referred to [12, 7℄ for more information.5 ConlusionThe GILK tool employs some state-of-the-art tehnology to provide a useful in-strumentation tool. It is an example implementation of runtime ode spliingfor a variable length instrution set, whih has not been done before. Experi-mental evidene supports it as an aurate and reasonably low overhead way ofperforming instrumentation.There remains, however, some sope for improvement. Partiularly, the sam-ple logging proess appears expensive. Live register analysis ould also be usedto make saving the mahine state when exeuting an instrument unneessary.Also, the need to implement instruments as kernel modules adds to the over-head by requiring an extra funtion all. This ould be prevented by employinga more sophistiated dynami loader as part of the devie driver. The ustomdisassembler ould be reworked to allow easy updating for new instrution setextensions and, �nally, the lient interfae ould be extended to provide moredefault instrumentation strategies and easier navigation through the kernel sym-bols.The soure ode for the tool has been plaed under the GNU General PubliLiense and is available for download from http://www.anonymous.om/~anon/

GILK. We are hoping to ontinue this work in the near future and provide a moreadvaned and mature prototype.Referenes1. Ikd: Assorted tools for debugging the linux kernel, ftp://e-mind.om/pub/linux/ikd/.2. Kernprof: A set of failities for pro�ling the linux kernel,http://oss.sgi.om/projets/kernprof/.3. Jennifer M. Anderson, Lane M. Ber, Je�rey Dean, Sanjay Ghemawat, Monika R.Henzinger, Shun-Tak A. Leung, Rihard L. Sites, Mark T. Vandevoorde, Carl A.Waldspurger, and William E. Weihl. Continuous pro�ling: Where have all theyles gone? ACM Transations on Computer Systems, 15(4):357{390, November1997.4. Mihael Bek et al. Linux kernel internals. Addison-Wesley, Reading, MA, USA,seond edition, 1998. Inludes CD-ROM. Translation of the German edition Linux-Kernel-Programmierung.5. Mihael Fr�ohlih and Mattias Werner. The daVini graph visualization tool,http://www.informatik.uni-bremen.de/davini/.6. Je�rey K. Hollingsworth, Barton P. Miller, J. R. Gonalves Marelo, Osar Naim,Zhihen Xu, and Ling Zheng. Mdl: A language and ompiler for dynami programinstrumentation. In Proeedings of the 1997 International Conferene on ParallelArhitetures and Compilation Tehniques (PACT '97), pages 201{212, San Fran-iso, California, November 10{14, 1997. IEEE Computer Soiety Press.7. H. J. Jensen. Self-organised ritiality, CUP, 1998.8. James R. Larus and Thomas Ball. Rewriting exeutable �les to measure programbehavior. Software - Pratie and Experiene, 24(2):197{218, February 1994.9. James R. Larus and Eri Shnarr. EEL: mahine-independent exeutable editing.ACM SIGPLAN Noties, 30(6):291{300, June 1995.10. Han Bok Lee and Benjamin G. Zorn. BIT: A tool for instrumenting Java byteodes.In Proeedings of the USENIX Symposium on Internet Tehnologies and Systems(ITS-97), pages 73{82, Berkeley, Deember 8{11 1997. USENIX Assoiation.11. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavani,K. Kunhithapadam, and T. Newhall. The paradyn performane tools. IEEEComputer, 28, november 1995.12. C. Tang P.Bak and K. Wiesenfeld. Self organised ritiality: an explanation of 1/fnoise. Physial Review Letters, 59:381, 1987.13. Amitabh Srivastava and Alan Eustae. Atom: A system for building ustomizedprogram analysis tools. ACM SIGPLAN Noties, 29(6):196{205, June 1994.14. Ariel Tamhes. Fine-Grained Dynami Instrumentation of Commodity OperatingSystem Kernels. PhD thesis, University of Wisonsin, 2001.15. Ariel Tamhes and Barton P. Miller. Fine-grained dynami instrumentation ofommodity operating system kernels. In Operating Systems Design and Imple-mentation, pages 117{130, 1999.16. Ariel Tamhes and Barton P. Miller. Using dynami kernel instrumentation forkernel and appliation tuning. The International Journal of High PerformaneComputing Appliations, 13(3):263{276, Fall 1999.

