
Parallel Programming Using SkeletonFunctionsJ. Darlington, A.J. Field, P.G. Harrison,P.H.J. Kelly, D.W.N. Sharp, Q. WuDept. of Computing, Imperial College, London SW7 2BZemail: fjd,ajf,pgh,phjk,dwns,wqg@doc.ic.ac.ukR.L. WhileDept. of Computer Science, University of Western Australia,Nedlands, Western Australia 6009email: lyndon@cs.uwa.edu.auAbstractProgramming parallel machines is notoriously di�cult. Factors contribut-ing to this di�culty include the complexity of concurrency, the e�ect ofresource allocation on performance and the current diversity of parallelmachine models. The net result is that e�ective portability, which de-pends crucially on the predictability of performance, has been lost.Functional programming languages have been put forward as solutionsto these problems, because of the availability of implicit parallelism. How-ever, performance will be generally poor unless the issue of resource alloca-tion is addressed explicitly, diminishing the advantage of using a functionallanguage in the �rst place.We present a methodology which is a compromise between the extremesof explicit imperative programming and implicit functional programming.We use a repertoire of higher-order parallel forms, skeletons, as the basicbuilding blocks for parallel implementations and provide program transfor-mations which can convert between skeletons, giving portability betweendi�ering machines. Resource allocation issues are documented for eachskeleton/machine pair and are addressed explicitly during implementationin an interactive, selective manner, rather than by explicit programming.1 IntroductionThe main obstacle to the commercial uptake of parallel computing is the com-plexity and cost of the associated software development process. Programmingparallel machines is more di�cult than programming sequential machines in atleast two fundamental ways: predictability of performance and portability.

Predictability of performanceSequential programming languages, incorporating the von-Neumann model ofcomputation, enjoy a simple one-to-one mapping between language constructsand their underlying machine implementation. Issues such as memory alloca-tion are resolved by the compiler with no performance implications, allowing theprogrammer to concentrate on high-level aspects of the algorithm. The program-mer can fairly con�dently predict the performance of a program on a particularmachine, whilst avoiding the burden and complexity of run-time resource allo-cation.In contrast, the mapping of a parallel program onto a multiprocessor machineis typically a complex process involving decisions about the distribution of pro-cesses over the processors of the machine, scheduling of processor time betweencompeting processes, communication patterns, etc. Often the only way for theprogrammer to achieve the desired level of performance is to take explicit controlof these decisions in the program, with the obvious increase in program complex-ity and a corresponding deterioration in program reliability. Some predictabilityis retained with shared-memory multiprocessors, which attempt to sustain thevon-Neumann model at low degrees of parallelism, but such machines are notscalable to the levels of performance required by many application areas.PortabilityThe universality of the von-Neumann model guarantees portability of sequentialprograms at the language level, with no danger of an unforeseen degradation inperformance. A sequential program moved to a machine with a faster processorwill, almost certainly, run faster.In the world of parallel machines the explicit nature of resource allocation meansthere is rarely any portability at all. Even where a high-level language can becompiled for di�erent machines, the wide disparity in the architectures availablemeans that the performance of a program can vary wildly and in unpredictableways unless it is radically altered as part of the porting process.The diversity of parallel machine architectures and the lack of a common modelof computation has led the application development community to fragmentinto incompatible, machine-oriented camps with proprietary languages/languageextensions predominating at the expense of a proper understanding of the �eld.There appear to be two routes out of the current state of a�airs.� One approach is the development of a `parallel von-Neumann machine',an abstract machine to which any useful programming model can be com-piled with predictable (small) loss of performance, and which can itself beimplemented on a scalable physical architecture, again at a known cost.This is the route taken by research into the parallel random-access ma-chine (PRAM[17]) and distributed shared memory[12], which attempts to

provide the illusion of a shared address space on a physically-distributedmachine, in e�ect taking the shared-memory model to arbitrary degrees ofparallelism.� The second, perhaps more direct, approach is the development of a pro-grammingmethodology for parallel machines which allows portability bothof programs and their performance across the whole range of architectures.This is the approach taken in this paper.Our approach involves abandoning the search for portability at the language levelin favour of a structured decision-making process based on the use of high-levelprogram forms, source-level program transformation and performance modelling.2 An Overview of the MethodologyThe central idea is to replace explicit parallel programming, using a parallellanguage, by the selection and instantiation of a variety of pre-packaged parallelalgorithmic forms known as skeletons. The approach is similar to that takenby Cole[2] for imperative languages and follows Backus's principle[1] that thekey to e�ective (functional) programming is the availability of a small �xed setof special operators (program-forming operations) which allow new functionsto be created from old ones. The methodology can be broken down into threeprincipal components: skeletons, performance models and program trans-formation.SkeletonsA skeleton captures an algorithmic form common to a range of programmingapplications. In our work, skeletons have been developed as polymorphic, higher-order, functions in a non-strict functional programming language.Each skeleton has a declarative meaning, established by its functional languagede�nition. This meaning is independent of any particular implementation ofthe skeleton: this allows skeletal programs to be prototyped rapidly on sequen-tial platforms and to be fully portable between di�erent parallel machines. Askeleton also has speci�c behaviours on particular parallel machines on whichit is known to be implementable. Of course, in principle, any skeleton can beexecuted on any machine: however, each skeleton is associated with a set ofarchitectures on which e�cient realisations are known to exist.All parallelism in a program derives from the behaviour of its skeletons on themachine in question. Functions to which skeletons are applied are executed se-quentially. All aspects of a skeleton's parallel behaviour, such as process place-ment or interconnectivity, are either clear from its de�nition or documented asissues to be addressed explicitly during implementation.

Performance modelsEach skeleton/machine pair has associated with it a performance model whichcan be used to predict the performance of a program written using the skeletonon that machine. These models are used by the programmer, the transformationsystem and the compiler to guide decision-making at all levels of the programdevelopment process. Resource allocation in particular relies heavily on the useof these performance models.Program transformationProgram transformation is used in the development process at all levels. Atthe topmost level, for example, it can be used to transform high-level problemspeci�cations into initial skeleton forms. At the lower levels it can be usedto convert programs from one skeleton form to another e.g. for the purposesof portability. At the lowest level, transformation can be used to �ne-tunean architecture-speci�c program to a particular machine in that class. Thismay involve, for example, partial evaluation[4] to vary the grain-size used in anapplication or to con�gure the program for a particular machine size.Wherever possible, the methodology aims to replace (re)invention, both of pro-grams and transformations, by selection from a limited range of possibilitiesdetermined by context. The skeletons and associated transformations form adecision-tree that can be navigated by the programmer to map high-level speci-�cations onto concrete machine architectures.Portability of programs is provided by the high-level nature of the the originalprogram speci�cation and the ability to record, replay and alter the derivationprocess from speci�cation to implementation. Resource allocation is tackledexplicitly by addressing the important performance questions directly ratherthan implicitly by writing a program with the desired properties.The next three sections of the paper discuss the three main aspects of themethodology in more detail. Section 6 discusses the implementation of themethodology and Section 7 concludes the paper.3 Parallel Algorithmic Skeletons3.1 Initial SkeletonsAn initial set of skeletons has been de�ned to capture the most common formsused in parallel algorithms. These are listed below, all de�nitions are expressedin Haskell [8].Simple linear process-parallelism is captured by the PIPE skeleton. A list offunctions are composed together so that elements can be streamed through them.

Parallelism is achieved by allocating each function to a di�erent processor. Notethat this idea can easily be extended to higher dimensions.PIPE :: [�! �]! (�! �)PIPE = foldr1 (.)The FARM skeleton captures the simplest form of data-parallelism. A functionis applied to each of a list of `jobs'. The function also takes an environment,which represents data which is common to all of the jobs. Parallelism is achievedby utilising multiple processors to evaluate the jobs (i.e. `farming them out' tomultiple processors).FARM :: (�! � !) ! �! ([�]! [])FARM f env = map . (f env)Many algorithms work by splitting a large task into several sub-tasks, solvingthe sub-tasks independently, and combining the results. This approach is knownas divide-and-conquer and it is captured by the DC skeleton. Trivial tasks (t)are solved (s) directly on the home processor: larger tasks are divided (d) intosub-tasks and the sub-tasks passed to other processors to be solved recursively.The sub-results are then combined (c) to produce the main result.DC :: (�! Bool) ! (�! �)! (�! [�])! ([�]! �) ! �! �DC t s d c x j t x = s xj not (t x) = (c . map (DC t s d c) . d) xAnother common class of algorithms describes systems where each object in thesystem can potentially interact with any other object. Each individual inter-action is calculated and the results are combined to produce a result for eachobject. This is described by the RaMP skeleton (`Reduce-and-Map-over-Pairs').This skeleton is typically used for initial speci�cation and implemented by trans-formation to an alternative form, for example by farming out the calculationsfor each object or by pipelining over the functions f and g.RaMP :: (�! �! �)! (� ! � ! �)! [�]! [�]RaMP f g xs = map h xswhere h x = foldr1 g (map (f x) xs)More dynamic algorithms are typi�ed by theDMPA skeleton (`Dynamic-Message-Passing-Architecture'). Here any process can interact directly with any otherprocess via message-passing, the actual connections being determined using run-time data. Each process has an internal state which records values local to theprocess: messages from other processes may modify the process's state and gen-erate new messages to other processes. Parallelism arises from evaluating theprocesses on di�erent processors.

DMPA :: ff�g ! f(Int; �)gg ! f(Int; �)g ! f�gDMPA f Pi initStatei j 1 � i � n g initMess= �lterms 0 messwhere mess = P1 initState1 (�lterms 1 mess) U � � � UPn initStaten (�lterms n mess) U initMess�lterms i ms = f conts j (j, conts) 2 ms, i == j gPi localState (c U cs) = replies U Pi updState csAll these skeletons describe MIMD modes of operation. The work describedin [10] brings SIMD machines, such as the Thinking Machines' CM-2, withinthe range of our techniques. There a small set of higher-order primitives isde�ned corresponding to the basic computation and communication capabilitiesof such machines. There is a very natural �t between these primitives and theaggregate view of computation, providing both a congenial abstraction of SIMDmachines and a basis for the e�cient support of array operations in functionallanguages. These primitives provide a platform on which skeletons describingSIMD computations can be de�ned.3.2 Example ApplicationsThis section gives examples of the use of the skeletons in describing typicalapplications. Some functions which only perform low-level arithmetic or datamanipulations are not fully speci�ed.As an example of the use of the PIPE skeleton the function compile below de-�nes the general structure of a compilation route for a high-level programminglanguage. compile :: [Char]! [Char]compile = PIPE [write�le, genCode, typeCheck, parse, lex, read�le]write�le, genCode, typeCheck, parse, lex, read�le :: [Char]! [Char]various stages in compiling a programIn the function exposedFaces, the FARM skeleton is used to determine which facesof a convex 3-dimensional body are visible from the origin of the co-ordinatesystem. Each face is checked individually by reference to a point which is insidethe body. The co-ordinates of this point form the shared environment of thefarm. exposedFaces :: [Face]! [(Face;Bool)]exposedFaces fs = zip fs (FARM checkIfVisible (pointInBody fs) fs)pointInBody :: [Face]! Pointcalculate a point which is inside the body fs (assumed convex)

checkIfVisible :: Point! Face! Boolgiven a point p inside the body, check if face f is visibleAn example application of the DC skeleton is mergesort. Given a function mergewhich combines two sorted lists whilst retaining their ordering, mergesort worksby recursively splitting its argument into smaller sublists until the sublists aretrivially sorted, then using merge to build a sorted permutation of the originallist. mergesort :: (�! �! Bool)! [�]! [�]mergesort = (DC isSingleton id split) . foldr1 . mergewhere isSingleton xs = length xs � 1split :: [�]! [[�]]split xs into a list of its sublistsmerge :: (�! �! Bool) ! [�]! [�]! [�]merge two sorted lists into a sorted listAn example of the RaMP skeleton is the classical problem of nBody simulation.At each step of the simulation, the force between each pair of bodies is calculatedand these are summed to determine the total force acting on each body and henceits new position and velocity.nBody :: [P lanet]! [[P lanet]]nBody ps = ps : nBody (map newPos(zip ps (RaMP calcF sumFs ps)))newPos :: (P lanet; Force)! P lanetcalculate the new position and velocity of planet pcalcF :: P lanet! P lanet! Forcecalculate the force exerted by planet p1 on planet p2sumFs :: Force! Force! Forcecombine the e�ects of forces f1 and f2The DMPA skeleton describes the most dynamic algorithms, where the inter-actions between processes are determined using run-time data. Interaction isvia message-passing. The function database describes a dynamically-changingdatabase whose contents are distributed over a network of processors. Eachnode has to be capable of handling requests for the whole database: requestswhich cannot be handled locally are forwarded to the relevant processor.data Message = Query DataItem j Add DataItem j Del DataItemj other message-types

database :: f(Int;Message)g ! fMessagegdatabase = DMPA f dbmanageri initDatai j 1 � i � n gdbmanageri :: Localdata! fMessageg ! f(Int;Message)gdbmanageri dat (Query info U ms)j DB == i = (0 , reply) U dbmanageri dat msj DB /= i = (DB , Query info) U dbmanageri dat mswhere DB = whereStored infodbmanageri dat (Add info U ms)j DB == i = dbmanageri (insert info dat) msj DB /= i = (DB , Add info) U dbmanageri dat mswhere DB = whereStored infodbmanageri dat (Del info U ms)j DB == i = dbmanageri (delete info dat) msj DB /= i = (DB , Del info) U dbmanageri dat mswhere DB = whereStored infowhereStored :: DataItem ! Intwhere is data of the type of item stored?insert, delete :: DataItem ! Localdata! Localdatainsert/delete an item into/from the local databaseMany other examples of the DMPA skeleton in action are described in [16],including a novel approach using dynamically-generated patterns of communi-cation to maximise the potential of the network facilities of MIMD machines.Examples include a new algorithm for parallel quicksort of O(logn)2 and newalgorithms for fractal generation and tesselation.4 Performance ModelsThe ultimate aim of a parallel programmer is to write a program that will exe-cute e�ciently on the chosen target machine.With today's software technologytargeted at non-uniform machines it is a di�cult task to even predict the perfor-mance of a given parallel program, let alone to ensure that it will be optimal. Wewould characterise today's approach by the term performance debugging. Theprogrammer writes a program that he hopes is reasonably e�cient, executes itand observes its behaviour. The information gained from these observations isthen used to modify the resource allocation decisions embodied in the program,and the modi�ed program is executed again to see if any improvement ensues.Often the programmer is proceeding in the dark, as he may not even know whatfactors are important in determining the performance of the program.Here we seek to develop a more scienti�c methodology based on the use of

performance models which, given a program, can both predict its performanceand suggest what may be done to improve that performance. Such a performancemodel is typically a set of analytical formulae parameterised by attributes of boththe program and the machine. There has been an impressive body of work inproducing such models for parallel hardware and software [7]. However, the stateof the art is unable to provide practical methods to predict the performance of anarbitrary program executing on an arbitrary machine. By limiting our programsto instantiations of known skeletons, each targetted at a speci�c set of machines,the methodology becomes more practical.A performance model is associated with each skeleton/machine pair and is usedconstructively in the programming process. A preliminary model is producedand veri�ed and quanti�ed experimentally. The model is adjusted until it isshown to be a reliable predictor of performance. This is equivalent to playing outthe `performance debugging' process once for each con�guration and recordingthe result for future reference.Consider as an example the Divide-and-Conquer skeleton, DC, targetted onto adistributed-memory machine. Such an architecture results in very non-uniformmemory access times, with local store access being much cheaper than remotestore access. The two most important factors governing program performancewill thus be process granularity and data placement. The model, therefore, needsto take account of the complexity of each of the argument functions of DC andthe speed of communication between processors. Taking all these factors intoaccount, an application should be solved in parallel if the following conditionholds (assuming a binary division function):TsolG > TdivG + TsolG=2 + TcombG=2 + Tcommswhere Tsolx is the time to solve a problem of size x on one processor, Tdivx isthe time to split a problem of size x into two sub-problems, Tcombx is the timeto combine the results from two problems of size x and Tcomms is the time tocommunicate problems and results between processors. The reasoning behindthis formulae is that the right hand side represents the worst case involved ingoing parallel, i.e. there is no further gain to be made from further parallelexecution and the two subproblems are solved sequentially. If this worst case isstill less than the time to solve sequentially, Tsolx , then it pays to keep dividing.We can expand this to calculate the total time required to solve a problem ofsize G on M processors:TsolG = logMXi=1 (TdivG=2i�1 + TcombG=2i + Tcomms) + TsolG=MSolving this equation for M will tell us the optimal number of processors touse in the evaluation. Note that further decisions will have to be made aboutwhether shared data should be evaluated once and accessed remotely, evaluated

once and copied to each processor or re-evaluated at each processor. [5] gives aperformance model combining all these factors.Many decisions in resource allocation can be expressed as source-level transfor-mations, for example balancing the stages of a pipeline or matching the numberof pipe-stages to the number of physical processors available. Decisions suchas these can be implemented as transformation routines to be applied by theprogrammer after consultation with the performance model. Other decisions sitmore naturally in the compilation process from the skeleton to the native codeof the target machine. In particular, some skeletons will have multiple imple-mentations on some machines, and the choice of the optimal one will be guidedby the performance model.We believe that this constructive use of performance models complements ourstructured approach to parallel programming. We consider it important thatfactors a�ecting performance are identi�ed and quanti�ed so they can be ad-dressed explicitly and the relevant decisions documented, rather than being leftunstated and accomplished indirectly as a side e�ect of a program with theappropriate behaviour.5 Program TransformationTransformation provides a natural route to portability in that a program writtenin terms of a skeleton which cannot be implemented easily on a given architecturecan be re-expressed in terms of another skeleton which does have an e�cientimplementation on that architecture. This particularly applies to the higher-level skeletons which may not map easily onto any architectures.As an example, a program written in terms of the RaMP skeleton can be imple-mented as a pipeline with length xs + 2 stages[11]:RaMP f g xs � (map snd . PIPE (map map (map g' xs)). map (pair unitg)) xswhere g' b (a, c) = (a, g (f a b) c)pair a b = (b, a)Alternatively it can be implemented on a distributed architecture as a FARM:RaMP f g xs � FARM h (f, g, xs) xswhere h (f, g, xs) x = foldr1 g (map (f x) xs)Note that transforming a RaMP to a FARM leaves many implementation issuesstill to be resolved, in particular whether the environment is to be accessedremotely or passed to each processor.An inter-skeleton transformation which relies heavily on �ne-tuning is DC toPIPE. By assuming that an application of DC is overrun-tolerant[19], we canobtain the equivalence[18][6]

map (DC t s d c) � PIPE (rept q (map' n c)) . map s .PIPE (rept q (foldr1 (++) . map d))rept :: Int! �! [�]rept n = take n . repeatmap' :: Int! ([�]! �)! [�]! [�]map' n f xs j length xs � n = f (take n xs) : map' n f (drop n xs)j length xs < n = []where q is the number of levels in the evaluation tree and map' is a variationof map which consumes its argument list in chunks of n elements. In the aboveexpression, n is the arity of each node in the evaluation tree, i.e. the length ofthe result list of d. This transformation gives us a version of the applicationwhich evaluates on a pipeline of length 2q + 1 for arguments up to `size' nq .For speci�c applications of DC we are often able to do much better, however.Take the de�nition of mergesort from Section 3.2:mergesort = (DC isSingleton id split) . foldr1 . mergewhere isSingleton xs = length xs � 1Unfolding the de�nition of mergesort once, and assuming the non-trivial case,we can derivemergesort f � foldr1 (merge f) . map (mergesort f) . splitThis equivalence holds for any implementation of split which satis�es the prop-erty mergesort f . foldr1 (++) . split � mergesort fwhich is essentially the speci�cation of split. We will choose a de�nition of splitwhich reduces its argument list to singletons in one pass (it is trivally shown tosatisfy the above property):split :: [�]! [[�]]split = map mkSingletonwhere mkSingleton x = [x]Applying the DC to PIPE transformation to the de�nition of mergesort gives usmap (mergesort f) � PIPE (rept q (map' n (foldr1 (merge f)))) .map id .PIPE (rept q (foldr1 (++) . map split))It is trivial to show that the expression foldr1 (++) . map split is idempotent,so we have the equivalence

PIPE (rept q (foldr1 (++) . map split)) � foldr1 (++) . map splitfor q > 0, together with the obvious equivalencesmap id � idf . id � fThe �nal pipeline for mergesort therefore has only q + 2 stages:map (mergesort f) � PIPE (rept q (map' n (foldr1 (merge f)))) .foldr1 (++) . map splitThis is clearly a signi�cant improvement over the naive application of the trans-formation.In short, transformation allows us to take a high-level, portable speci�cation andtarget it onto any architecture which is at hand, and to �ne-tune an instantiationof the speci�cation to take advantage of the particular characteristics of anarchitecture without compromising program legibility and reliability. Portabilityarises directly from the ability to replay the transformation using di�erent rulesfor di�erent architectures.6 ImplementationWe have constructed an initial implementation of the skeletons using the func-tional language Hope+[15] as the source language and using C as the targetlanguage. This compiler makes extensive use of macros, giving us maximumexibility to explore di�erent implementation options, e.g. remote vs. local pat-terns of data access (e.g. FARM) and process placement options (e.g. DMPA).The initial installation was carried out on a Meiko Transputer surface, usingthe CS Tools [13] library to provide exibility in communication. Initial re-sults, in terms of both speed-up and the usability of the methodology, have beenpromising although we have not, as yet, made direct comparisons with hand-coded versions of the same algorithms.. A subsequent, partial, implementationhas been carried out on a Fujitsu AP1000 made available under Fujitsu ParallelComputing Centre Facilities programme. The AP1000 is of particular interestas its richer communication capabilities allow greater varieties of implementa-tions to be considered. Further implementations of the skeletons on networks ofworkstations and a SIMD machine are planned.

7 Conclusions and Future WorkImplementation optionsA preliminary study and implementation of compiler options has been carriedout [9]. For each of the skeletons apart from DMPA two or three alternativeimplementation options were identi�ed and the compiler extended to realisethese options. Experiments showed that each of the options were more e�ectivefor some range of inputs than the general implementation.Application-speci�c skeletonsMany potential application areas for parallel computing, for example databasesand solid modelling, have their own characteristic high-level data and controlstructures. We plan to extend our skeleton-based methodology into these areas.We aim to construct domain-speci�c skeletons which would allow specialiststo construct applications in these areas directly, without recourse to low-levelprogramming. These initial system speci�cations could then be mapped ontothe selected target machines by an extension of the program transformation andstructured implementation techniques we have already developed. Preliminarystudies in the area of solid modelling [14] and data bases have been encouraging.`Languageless programming'The ultimate goal of our work is to completely replace the requirement for inven-tion or creation during application development by a process of selection froma range of possibilities determined by context. We aim to factor out all thedecisions involved in creating an application and mapping it e�ciently onto amachine and present them as a sequence of selections of appropriate skeletons,transformations and implementation options. Achieving this goal would havemany bene�ts: simplifying application development; documenting the decisionsmade during the development of an application; and ensuring that the program-mer addresses all the issues involved in the implementation process.Given this framework, the system could be used via a menu-driven interface,with the skeletons and options presented visually. Visual programming is veryattractive, but we feel that many current systems miss the point and simplypresent an unchanged programming paradigm in a visual manner. We considerthat it is important to �rst convert the programming process from one of inven-tion to one of selection, which lends itself well to the visual style of presentation.

8 AcknowledgementsWe would like to thank all our colleagues at Imperial College for their inputsand assistance. The inuence of and Backus's ideas on our work is obvious.The work reported here was initially developed in the UK SERC/DTI fundedproject `The Exploitation of Parallel Hardware using Functional Languages andProgram Transformation' and used equipment funded under the SERC's ParallelEquipment Initiative.We are also grateful to Fujitsu, Japan, for making theAP1000 machine available under the Fujitsu Parallel Research Centre Facilitiesprogramme.References[1] J. Backus, Can Programming Be Liberated from the von-Neumann Style?A Functional Style and its Algebra of Programs, CACM vol. 21, no. 8, pp.613-41, 1978.[2] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Com-putation, Pitman/MIT Press, 1989.[3] J. Darlington, Y-k. Guo and H.M. Pull, A New Perspective on Integrat-ing Functional and Logic Languages, Conf. on Fifth Generation ComputingSystems, Tokyo, June 1992.[4] J. Darlington and H.M. Pull, A Program Development Methodology Basedon a Uni�ed Approach to Execution and Transformation, in Partial Evalu-ation and Mixed Computation, North-Holland, 1988.[5] J. Darlington, M.J. Reeve and S. Wright, Programming Parallel ComputerSystems using Functional Languages and Program Transformation, in Par-allel Processing '89, Leiden, 1989.[6] P.G. Harrison, Towards the Synthesis of Static Parallel Algorithms: a Cate-gorical Approach, IFIP TC2Working Conference on Constructing Programsfrom Speci�cations, Paci�c Grove, California, May 1991 (published as Con-structing Programs from Speci�cations, North-Holland).[7] P.G. Harrison and N. Patel, Performance Modelling: Application to Com-munication Networks and Computer Architecture, Addison-Wesley, 1992.[8] P. Hudak, S.L. Peyton Jones, P.L. Wadler, B. Boutel, J. Fairburn, J. Fasel,M. Guzm�an, K. Hammond, J. Hughes, T. Johnsson, R. Kieburtz, R.S.Nikhil, W. Partain and J. Peterson, Report on the Functional ProgrammingLanguage Haskell, SIGPLAN Notices 27(5), May 1992.[9] C. A. Isaac, Structural Implementations of Functional Skeletons, MScProject Report, Dept. of Computing, Imperial College 1992.

[10] G.K. Jouret, Compiling Functional Languages for SIMD Architectures, 3rdIEEE Symposiumon Parallel and Distributed Processing, Dallas, December1991.[11] P.H.J. Kelly, Functional Programming for Loosely-coupled Microprocessors,Pitman/MIT Press, 1989.[12] K. Li and P. Hudak,Memory Coherence in Shared Virtual Memory Systems,ACM Transactions on Computer Systems vol.7, no. 4, pp. 329-59, 1989.[13] Meiko Ltd., CS Tools for SunOS, 1990 Edition: 83-009A00-02.02.[14] G. Papachrysantou, High Level Forms for Computation in Solid Modelling,MSc Project Report, Dept. of Computing, Imperial College 1992.[15] N. Perry, Hope+, Internal document IC/FPR/LANG/2.5.1/7, Dept. ofComputing, Imperial College, 1989.[16] D.W.N. Sharp and M.D. Cripps, Parallel Algorithms that Solve Problemsby Communication, 3rd IEEE Symposium on Parallel and Distributed Pro-cessing, Dallas, December 1991.[17] L.G. Valiant, General Purpose Parallel Architectures, in Handbook of The-oretical Computer Science, North-Holland, 1990.[18] R.L. While, Transforming Divide-and-Conquer to Pipeline, Internal note,Dept. of Computing, Imperial College, 1991.[19] J.H. Williams, On the Development of the Algebra of Functional Programs,ACM Transactions on Programming Languages and Systems vol. 4, pp.733-57, 1982.

