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Introduction

When performing calculations on a computer, most packages operate at a degree of precision slightly higher than required for the answer (i.e. working to 12 decimal places when 10 are needed). For most simple calculations this gives the required accuracy, and uses the processor’s floating point arithmetic unit to produce the answer quickly. However, with long and complex calculations involving many terms and functions, the error can grow quite quickly to give inaccurate results.

In order to counteract this problem, two implementations of exact real arithmetic currently exist, which allow the result of a numerical expression to be obtained up to any specified accuracy. The first implementation was developed at Imperial College, and uses rational arithmetic and continued fractions to express elementary functions such as exp., log, sine, cosine etc. The use of continued fractions gives a fast convergence, but application of rational arithmetic produces inefficiencies when compared to alternative floating point packages, which make the best use of the computer’s internal representation of numbers.

The other implementation has been developed using C++ in Germany by Professor Nobert Th. Müller, and is called iRRam. It uses floating point intervals to specify the range of the possible error at each stage of the calculation, and therefore control it’s size by changing the precision of calculations when required. For each stage of the calculation, the result and the possible bounds are calculated, and then passed on to the next stage of the calculation. If the error bound grows too large at any stage of the calculation, the whole calculation is repeated using a higher precision. As a result of this, inefficiencies occur through redoing the calculation too many times, so expressions need to be reduced to as few stages as possible. Therein lies one of the causes of inefficiencies. Most of the elementary functions available in the library are based in Taylor’s series expansions, which converge at a slower rate than continued fractions.

The purpose of this project is to try and combine the benefits of the fast floating point computations used to overcome floating point errors in Müller’s implementation, and the faster convergence of continued fractions used within the method developed at Imperial College. This is to be achieved by changing the C++ function bodies within the library of Muller’s implementation, such that they apply expansions based on continued fractions rather than Taylor’s series. The theory behind the project has principally been based around the work published in a PhD by Dr. Peter Potts, on Exact Real Arithmetic using Mobius Transformations 
Continued Fractions

A continued fraction is a development of the form
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where ai and b​i are rational numbers, for all non-negative integers i. Such an expansion can be used to exactly represent a non-rational number. For example, (2 can be represented by
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Approximations to such a number can then be taken by considering a finite expansion, consisting of the required number of terms. For example, a finite approximation containing n terms of a continued fraction expansion would be defined by
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The continued fraction is said to be convergent if the sequence 
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converges, cn referred to as the nth approximant of the continued fraction.

A shorthand for denoting continued fractions is [a0.b0, a1.b1, a2.b2, …], with the bis often being omitted if they are all 1. For example, the continued fraction representing (2 can be written as [1, 2, 2, 2, 2, …] or even [1, 
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Implementing the General Continued Fraction Calculations

Using continued fractions, evaluating an approximant to a function would involve calculating the value of a cn approximation, with larger values of n giving a greater degree of accuracy. As the method for evaluating such an approximant would be the same for each function once the values for the ais and bis have been given, I decided to implement a general method for evaluating a finite representation of a continued fraction. This was done by creating an abstract class for a function, including two virtual methods to return the values for the ais and bis.
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The following UML diagram shows the attributes and methods of the class:

The class has two protected attributes, the value of x for which the approximate is to be calculated, and the derived value of x2, which is calculated and stored when x is set because it will be used repeatedly throughout the calculations. The methods include the public accessor function for setting x (which also sets x2), and the approx function calculates the approximation to an accuracy of 2-prec. In doing so, it calls on the protected virtual methods a(n:long) and b(n:long), which give the terms in the expansion [a0.b0, a1.b1, a2.b2, …] that are specific to the particular function that is being looked at. They will be implemented by the derived classes for each function.

In order to test out this class, and provide a base for comparison, I started by implementing the Euler Continued Fraction expansions, which are equivalent to the Taylor’s series approximation method. Three derived classes were created for the sine, cosine and exponential functions, as shown by the following UML diagram:
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Each of the derived classes provided implementations for the virtual methods a and b. These are defined from the power series 
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 used for the Taylor series expansions by:

a[0] = 0;

a[1]  = 1;
a[n+1] = 1 + 
[image: image7.wmf]x

a

a

n

n

1

-

;
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For the specific case of the sine function, the values are:

a[0] = 0;

a[1]  = 1;
a[n+1] = 1 - 
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b[0] = 1;

b[1]  = 
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Values for other such functions are given on P69 of Potts’ Thesis.

Once these approximation methods were implemented, they were tested and compared with the functions available in current library. The values of x tested for included 0, 0.5, 1, -1, 2, (, 
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, for a precision of 2-350. Each calculation returned the same number as the functions in the original library, taking the same length of time to the nearest unit measured by the clock() function in the C++ library. By adding a printf(“%d\n”, n) statement within the approx(prec:long) method, I was also able to trace how many steps of the expansion were required to obtain the necessary expansion.

In order to calculate the approximation to the required degree of accuracy, each approximation for progressively more terms was calculated, and the compared with the previous approximation obtained. If the difference was greater than the precision specified, the next approximation would be calculated, otherwise the current one would be returned by the function. This comparison was done by the bound(REAL& x, long y) function within the iRRam library, returning true if and only if x is bounded by (2y.

The simple method of calculating these expansions however starts with the bottom of the finite continued fraction approximation, and makes it’s way up, dividing by a previous cumulative result. This means that if the next approximant is required, all the values of ai and bi would need to be recalculated and included within the fraction, so another property of continued fractions was required to enable the calculation of the next approximant without having to redo everything that had been done before.

The property in question is used in the proof of the “Backward Theorem” found on page 56 of Potts’ thesis. By defining sequences and B as:

A0 = 1

A1 = a0
An+2 = an+1An+1 + bnAn
B0 = 1

B1 = 1

Bn+2 = an+1Bn+1 + bnBn;
the relation 
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can be derived and used for further approximates.

Hypergeometric Function Continued Fraction Expansions

Although the Euler expansion and other similar expansions based on power series expansions can be used for a wide range of functions, there are still some where the Taylor’s series expansion has terms calculated from complex numbers. These are in the form:
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where a, b and c are complex numbers. Potts’ thesis lists some of the expansions are used for log, tan, tanh, arctan, and arctanh. As with the Euler expansion functions, these were implemented by just overloading virtual methods a(n:long) and b(n:long).

Using a PC with a Pentium II 300MHz processor, 128MB RAM, and a Linux based operating system, tests for the log function using a precision of 2-800 revealed the following results:

x
Original Library Function
Continued Fraction Method


Number of Steps
Time (ms)
Number of Steps
Time (ms)

0.1
69
20
59
30

0.5
65
20
56
20

1
65
10
56
20

(
67
20
57
30

10
67
20
57
20

20
64
30
59
30

The results show that although the new method took fewer steps to converge to an answer, it took a slightly longer time to do so. Looking through the operations used within the function, the calculations were no more complex, but extra multiplications are required in obtaining the next approximate from the previous, whereas the Taylor series method just adds on the extra term calculated. This could indicate that the method would be faster if earlier approximations were omitted, but that would require further analysis into how many approximations are required to give the desired accuracy.

A similar situation was revealed for the tan function, but the following table shows that the continued fraction method required more steps to converge for some values of x within the arctanh function, when working to an accuracy of 2-458:

X
Original Library Function
Continued Fraction Method


Number of Steps
Time (ms)
Number of Steps
Time (ms)

0
38
10
1
20

0.01
39
10
31
20

0.1
38
10
54
20

0.5
40
10
122
20

(/12
40
10
80
20

(/6
40
10
127
30

(/4
38
10
221
40

Although there may be improvements for some values of x, the original functions are probably the most efficient to use for most cases.

Padé Approximants

Although the Euler expansions show that continued fractions can be used for most basic functions, they offer no advantages as they can be simplified to exactly give the Taylor series expansions. Other expansions do however exist which could converge quicker. These are based on Padé approximants, which are rational functions determined by the Taylor series. In 1892, Padé ordered their structure into a tabular form of the array:
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An [L/M] Padé approximant can be derived from a table of values known as the C table. It takes the form:
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with the values being defined by

C(L/0) = 1

C(L/1) = aL

C(0/M) = 
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C(L/M) = 
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As explained on P66 of Potts’ Thesis, it was shown that sequences of rational functions going down the table would converge towards the value of the function being approximated. The Taylor’s series of a function at 0 for example occupy the first column of the table. However, taking sequences down the diagonal provide faster and more efficient convergence. One such sequence gives the Stieltjes Type Continued Fraction, whose sequence of approximants correspond to the stair step sequence:
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For the power series 
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cn = 
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and the continued fraction is defined to be 
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Implementing Stieltjes Based Continued Fraction Approximants

Due to the more complicated nature of the values used in the continued fraction, I decided to create another abstract class StieltjesApprox, which inherits some methods from the original FunctionApprox class, as shown by the following UML diagram:

[image: image38.png]FunctionApprox
{abstract}

#x Real
#1x2: Real

+ sel_x(input-Real) Real
+approx(prectlong): Real
<<virtual>> # arvlong): Real
<<virtual>> # brvlong): Real




In this case, the methods a(n:long) and b(n:long) are not virtual, and are defined in terms of the methods Stieltjes_b(n:long) and Stieltjes_c(n:long). These in turn are defined in terms of the method Pade(L:long, M:long) which returns the C table value C(L/M). As shown in the definition for the C table values, this requires the coefficients used in the power series, which are returned by the virtual method Taylor_a(n:long). From this class, specific classes for the sine, cosine and exponential functions were derived, only requiring the implementation of the Taylor series coefficient method in each case.

Whilst this expansion did show an improvement in the number of steps required to converge, the Jacobi Type Continued Fraction should converge even quicker, corresponding to the diagonal sequence of Padé approximants:
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Using the same power series and sequences for bn and cn,  the continued fraction is defined as:
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As the same methods for calculating bn and cn were required, these expansions were implemented by created a class that inherits from the class for Stieltjes Type Continued Fractions, as shown by the diagram below:

[image: image39.png]FunctionApprox
{abstract}

#x Real

#1x2: Real

+ sel_x(input-Real) Real

+approx(prectlong): Real

<<virtual>> # arvlong): Real

<<virtual>> # brvlong): Real

sinapproximate

{derived) cosapproximate expapproximate

{derived) {derived)

#a(long) Real
#b(Real) Real

#a(long) Real

#a(long) Real
#b(Real) Real

#b(n:Real): Real




Once again, the method Taylor_a(n:long) is virtual, and the methods a(n:long) and b(n:long) are overwritten to reflect the difference in the expansion.

Implementing the Taylor_a(n:long) method, classes for sine, cosine and exponential were derived from this for the Jacobi Type Continued Fractions. Testing out the functions for a precision of 2-458, the number of steps required to converge to an answer are shown below:

x
Number of steps required to converge for:


Sin
Cos
Exp


Euler Method
Jacobi Method
Euler Method
Jacobi Method
Euler Method
Jacobi Method

0
2
2
3
2
2
2

0.0001
7
3
8
3
18
14

0.1
12
4
13
4
27
13

0.5
13
5
14
5
30
14

1
14
5
14
5
32
15

2
14
5
13
5
34
16

(/6
13
5
14
5
30
14

(/4
14
5
14
5
31
15

(/2
3
2
2
2
33
15

2(
2
2
3
2
27
13

These results show a far superior rate of convergence for the Jacobi method with most calculations converging in less than half the number of steps, but execution times for these calculations were a lot greater, with some approaching 6 minutes compared to 10 milliseconds for the Euler method.

Analysing the calculations involved, I discovered that a lot of them involved multiplications by powers of x, only to be followed by divisions of powers of x.  In order to try and minimise the number of times x is involved, I tried to change the methods used, such that coefficients of the powers of x are calculated separately, and then include the x at the end. For example, due to the nature of the Taylor series expansions, all elements in the same column of the C table involve the same power of x, with equal increments between columns. This means that a large number of the powers of x end up all being cancelled out in calculating:

C(L/M) = 
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as all terms in the numerator have the same power of x. This means that by separately calculating the power of x required in the final answer, only the coefficients used in previous values within the C table need to be taken into consideration. The same is true for the terms an in the Taylor series expansion, where once the first term and increment in the powers of x between terms is known, a term an can be found by finding the coefficient of the power of x involved, multiplying it by the x part of the first term, and then by the increment between terms, to the power of n.

i.e. a​10 for the Taylor series expansion 
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To implement this, virtual methods returning the base for the Taylor series expansion (x in the case of sine), the increment in the powers of x between terms an and an+1 (x in the case of sine, but 1 for exp), and the coefficients to multiply these by (
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in the case of sine) were added. This meant that the revised class for the Stieltjes and Jacobi Type Continued Fraction expansions looked like this:
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The idea of separating the coefficients has also been used for the method Stieltjes_b(n:long). In the calculation


bn = 
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both the numerator and denominator have one an element from each column of the C Table, thus all the powers of x cancel out, leaving just the coefficients calculated for the C(L/M)s.  Although a similar idea could be used for the Stieltjes_c(n:long) method, tests showed slightly longer calculation times. This could be a result of the small values of the powers of x keeping the intermediate calculations small in size, so fewer reiterations are required as the precision required changes through the calculation.

Improving the Complexity of the C Table Calculations

As a result of these modifications, the execution times of the functions improved by a large factor to approximately a minute per call. Although this was a vast improvement, it was still very far from the times given by the Euler method, so I added a few printf statements within the program to trace through the sections that were causing the inefficiencies.

In doing so, I found that the main problem was in the calculation of the values in the C table. The direct implementation of the recursive definition meant that earlier values were being recalculated. For example, the call to calculate C(L/M) also calls the calculation of C(L-1/M-1), C(L+1/M-1) and C(L/M-2), even though many of them would have been calculated previously in earlier approximations. As the depth of calculations involved for values within the same column would be the same, letting t(L) be the number of operations required to calculate C(L/n) for any n, in most cases meaning that:

t(L)
= 2*t(L-1) + t(L-2)


= 2*(2*t(L-2) + t(L-3)) + (2*t(L-3) + t(L-4))


(

= a*2L + b*2L-1 + ( + x*2 + y

This means that the calculation has a complexity of order 2n, which grows to be infeasible for even small approximations, as the approximation cn requires the calculation of C(n/n).

One solution to this was to store the values calculated so far , as if previous values are already available, only 4 operations are required to calculate C(L/M). In calculating cn, the following values are needed:
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In total, this comes to 
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values, so the calculation has a complexity of order n2. The problem with this however is that such a solution would require a trade-off with memory usage, and as the number of steps required in a n approximation is normally not known beforehand, the size of array holding these values cannot be bounded and still work for all situations. To overcome this, I tried to implement a dynamic array that can grow in size when needed, using vectors of vectors from the C++ standard template library. The overheads involved in allocating space and accessing elements in a dynamic array however meant that most of the benefits of this implementation were restricted, giving only a small factor improvement.

As a result of this, I decided to have a look at using a static array. Previous tests show that in most cases the number of steps required for convergence have often been limited to between 5 and 12, and the method used by Müller stores over 400 Real values for each variable, so a 30x30 matrix would not be relatively too big, and would cater for most situations. In other cases where it is not large enough, the calculation could default to using another method instead.

Implementing the Storage of C Table Values

In order to implement this storage of previous values, I decided to add a 30x30 matrix of records to the attributes section of the class. Each record consisted of a Real, and a boolean to indicate if a value had been calculated and entered for the particular entry. To make use of this, the PadeCoeff(L:long,M:long) method was modified to first check if the required value has already been added to the table. If so, it accessed and returned it. Otherwise, it followed the recursive definition to obtain the values returned by PadeCoeff(L-1,M-1), PadeCoeff(L+1,M-1) and PadeCoeff(L,M-2), which in turn checked if those values had been entered. After doing the calculation, the function then added the value to the matrix, before returning it.

This implementation saw a drastic improvement in the execution times of the functions, reducing them to approximately 1 second in most cases of the sine and cosine functions, yet there was still a little more room for improvement. Further analysis showed that a lot of calculations were being repeated because the initial level of precision used was not high enough. Because of this, I tried to force the use of a higher precision first time for certain parts of the calculation. This was done through a call to the iRRam functions stiff_begin() and stiff_end(), leading to less reiterations. Testing various combinations seemed to reveal that the optimal conditions were displayed when the number of times these functions were used to obtain a bigger increase in precision, equalled the precision required of the answer divided by a 1000. This is however a rough estimate, as the documentation into the stiff_begin() function does not reveal specifics as to how it works. Further work could involve analysing the function to prove a general rule for its use.

As a result of this change, the final execution times of the sine, cosine and exponential functions using the Jacobi Type Continued Fractions are shown in this table:

x
Execution time in milliseconds for:


Sin
Cos
Exp


Euler Method
Jacobi Method
Euler Method
Jacobi Method
Euler Method
Jacobi Method

0
10
10
10
10
10
10

0.0001
10
10
10
10
10
720

0.1
10
30
10
30
10
400

0.5
10
30
10
40
10
730

1
10
30
10
40
10
1290

2
10
30
10
40
10
1350

(/6
10
30
10
50
10
760

(/4
10
40
10
40
10
1300

(/2
10
30
10
30
10
1350

2(
10
10
10
10
10
400

The classes for sine and cosine given results very similar to the original, but those for the exponential function are quite a large factor out. This may be due to the numbers involved in the tests often being greater than 1.

Although I was unable to find any further improvements for single functional calculations, I noticed that the table of C coefficients would be the same for each instance of a certain class being used. E.g. sin(0.5), sin(1) and sin(() would all use the same table of values, as the power of x part of the C table has been separated out. This means that if the matrix used by the method PadeCoeff(L:long,M:long) is kept static, once it has been filled in by the first instance of the approximation class, other instances could calculate approximations a lot faster. Testing this out, I found that working with a precision of –800, the first calculation of sin(0.5) took 300 milliseconds compared to around 60 for the Euler method, yet future calculations took only 20 milliseconds.

One possible use of this is in numerical approximation methods to integrals. For example, the Simpson’s Rule requires the evaluation of a function at many points within a given interval. Although the execution time may be longer for small numbers of evaluations, it would quickly become more efficient as more are taken. The only problem that may be present would be the precision of the values in stored. Different calculations may require different precisions, so further study into the value within the interval requiring the greatest precision may be necessary, to decide on the order in which the evaluations should be made.

Conclusions and Possibilities for Further Study

Overall, although the attempts to implement the continued fractions for various functions have not been completely successful, some useful results have been found. Despite the longer execution times, the Jacobi Type Continued Fractions offered a far superior rate of convergence to the Taylor Series expansions for the sine, cosine and exponential functions. Continued fractions based on the Hypergeometric function such as those for tan, tanh, log and arctan also showed improved rates of convergence, though not to as a great a degree.

However, the main problem was that the new methods did not reduce the time required to calculate the approximations, which was the main aim of the project. Expansions based on the Hypergeometric function had times close to the original method, but overheads involved in switching between successive approximates negated any benefits from the improved rates of convergence. One possible area that could be looked into further detail is the number of approximates required to give the desired precision. Finding this could lead to the later approximates being calculated straight away, and thus reducing this overhead.

In the case of the expansions based on the Jacobi Type Continued Fractions, the main cause of the inefficiencies was in the calculation of the values within the C table. A generalised formula for the values would reduce this problem greatly as earlier values would not be relied on, but there does not appear to be a simple one in most cases. Instead, the manner in which the table has been implemented within my classes does allow certain stored calculation results to be shared between different instances of a function class. This means that the large overhead involved in setting up the table could only be required once, with further evaluations of the same function at different points being able to make use of results from prior evaluations. The main benefit from this may be seen in numerical methods of integration such as Simpson’s Method, though further tests may be required.

Finally, closer examination of the stiff_begin() function and the way in which the iRRam changes the precision of its calculations may help to optimise sub-calculations which may need to return values to a higher precision than the rest of the calculations, in order to reduce the number of reiterations done by the library.
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