
Perl Short Course: Some Extra Notes

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2015

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 1 / 11

Contents

Here’s some material that got removed from the Perl course, or
never quite made it - might be interesting:

Fifth Lecture: DBI films example, handling null/undef better
Sixth Lecture: Person and Programmer version 4
Moose: a new OO system for Perl
How CSG use Perl

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 2 / 11

Fifth Lecture extra notes DBI films example, handling null/undef better

In the DBI films example eg6, slide 19, we found a problem: one
film record had a null length field (which became undef in Perl).
This caused a warning, which we fixed in the lecture by:

while(my $record = $sth->fetchrow_hashref)

{

print "Title: $record->{title}\n";

print "Director: $record->{director}\n";

print "Origin: $record->{origin}\n";

print "Made: $record->{made}\n";

my $length = $record->{length} // ’’;

print "Length: $length\n";

print "-" x 30 . "\n";

}

$sth->finish;

Perhaps any of the fields could have been null, could we deal
with all of them better? Sounds like a job for map!

while(my $record = $sth->fetchrow_hashref)

{

my($title, $director, $origin, $made, $length) =

map { $record->{$_} // ’’ }

qw(title director origin made length);

print "Title: $title\n";

print "Director: $director\n";

print "Origin: $origin\n";

print "Made: $made\n";

print "Length: $length\n";

print "-" x 30 . "\n";

}

$sth->finish;

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 3 / 11

Fifth Lecture extra notes DBI films example, handling null/undef better

Or, if you preferred, use map to generate a new hash:
while(my $record = $sth->fetchrow_hashref)

{

my %f = map { $_ => $record->{$_} // ’’ } keys %$record;

print "Title: $f{title}\n";

print "Director: $f{director}\n";

print "Origin: $f{origin}\n";

print "Made: $f{made}\n";

print "Length: $f{length}\n";

print "-" x 30 . "\n";

}

$sth->finish;

Or we could use a procedural map to modify %$record:
while(my $record = $sth->fetchrow_hashref)

{

map { $record->{$_} //= ’’ } keys %record;

print "Title: $title\n";

print "Director: $director\n";

print "Origin: $origin\n";

print "Made: $made\n";

print "Length: $length\n";

print "-" x 30 . "\n";

}

$sth->finish;

Whichever way we decide to do it, we might want our general
sql_foreach() function to do such de-nulling once and for all.

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 4 / 11

Sixth Lecture extra notes Person and Programmer Generalisation (programmer-v4)

In the sixth lecture, we presented a lengthy class example about
people (class Person) with names, sexes and ages, and
programmers (subclass Programmer) with additional
programming language skills.

Our final version programmer-v3 got Duncan’s skills back by
using constructor chaining.

Isn’t there a better way? Well, the only thing varying per-class
appears to be the set of data fields which we want to initialize,
and their default values. Remove Programmer’s constructor,
and generalise Person’s constructor as follows:

fun new($class, %arg) {

my $obj = bless({}, $class);

my %default = $obj->_defaultvalues;

while(my($datum,$value) = each(%default))

{

$obj->{$datum} = $arg{$datum} // $value;

}

return $obj;

}

Now, each class defines a private _defaultvalues() method, listing the
default values of all the initializable data fields:

method Person::_defaultvalues { return (NAME=>"Shirley", SEX=>"f", AGE=>26); }

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 5 / 11

Sixth Lecture extra notes More Chaining (programmer-v4)

Continuing:
method Programmer::_defaultvalues

{

return (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"});

}

These methods allow a single generic Person::new constructor to
initialize all the desired data fields. Of course, we are still
repeating all the defaults in each subclass.

Can we fix this? Yes, but back to method chaining!
method Programmer::_defaultvalues {

my %default = $self->Person::_defaultvalues;

$default{SKILLS} = { java => "ok" };

return %default;

}

More generically, we can write the chained method call as:
my %default = $self->SUPER::_defaultvalues;

to call the first available parental _defaultvalues() method.

This is the final version programmer-v4 in the Lecture 6 tarball.

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 6 / 11

Moose: a new OO system for Perl Moose version of Person (mooseperson-v1)

As an alternative to Perl’s bless() based objects and classes, developers
have built Moose, a whole new OO system for Perl.

To give you a flavour of what Moose can do, lecture 6’s Person class
could be written:

package MoosePerson;

use strict;

use warnings;

use Function::Parameters qw(:strict);

use Moose;

has ’name’ => (is => ’rw’, isa => ’Str’, default => ’Shirley’);

has ’sex’ => (is => ’rw’, isa => ’Str’, default => ’f’);

has ’age’ => (is => ’rw’, isa => ’Int’, default => 26);

method as_string

{

my $class = ref($self);

my $name = $self->name;

my $age = $self->age;

my $sex = $self->sex;

return "$class(name=$name, age=$age, sex=$sex)";

}

stringification

use overload ’""’ => \&overload_as_string;

fun overload_as_string($list, $x, $y) # don’t care about last 2 params

{

return $list->as_string;

}

1;

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 7 / 11

Moose: a new OO system for Perl Moose version of Person (mooseperson-v1)

The example program (eg2) is virtually unchanged (only change:
the new parameter keys are now lower-case):

use MoosePerson;

my $dunc = MoosePerson->new(name => "Duncan", age => 45, sex => "m");

print "$dunc\n";

$dunc->age(20); $dunc->name("Young dunc");

print "$dunc\n";

Let’s see a Moose version of Programmer:
package MooseProgrammer;

use strict;

use warnings;

use Function::Parameters qw(:strict);

use Moose;

extends ’MoosePerson’;

has ’skills’ => (

is => ’rw’,

isa => ’HashRef’,

default => sub { return { java => ’ok’ } },

);

method skills_as_string { # additional method

my $sk = $self->skills;

my @str = map { sprintf("%s:%s", $_, $sk->{$_}) } sort(keys(%$sk));

return "{" . join(", ", @str) . "}";

}

around ’as_string’ => fun($orig, $self) {

my $pers = $self->$orig(@_); $pers =~ s/ \)$//;

my $skills = $self->skills_as_string;

return "$pers, skills=$skills)";

};

1;

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 8 / 11

Moose: a new OO system for Perl Moose version of Programmer (mooseprogrammer-v1)

Inheritance is done through the extends ’ParentClass’ syntax. Moose also
offers nice method wrapping - around is one such feature.

Let’s see a Moose version of eg3a:
use MooseProgrammer;

my $dunc = MooseProgrammer->new(name => "Duncan", age => 45, sex => "m",

skills => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"java" => "minimal"

});

print "$dunc\n";

$dunc->age(20);

$dunc->name("Young dunc");

$dunc->skills({ "C" => "good", "prolog" => "good" });

print "$dunc\n";

As expected, when run, that says:
MooseProgrammer(name=Duncan, age=45, sex=m, skills={C:godlike, C++:ok, java:minimal, perl:godlike})

MooseProgrammer(name=Young dunc, age=20, sex=m, skills={C:good, prolog:good})

Moose also supports user-defined types, roles, delegation etc. It
does seem genuinely easier to use than blessed reference OO, and
does a lot of the boilerplate dull stuff for you.

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 9 / 11

How CSG use Perl

CSG use Perl a great deal:

When we unpack a new machine, we enter inventory, hostname,
IP address and MAC address details into a Postgres database -
via a web database interface (a Perl CGI script). We also
add configuration information about the new desktop in another
database table (host classes, what type of machine it is) and do a
small amount of extra configuration.
When we plug the new machine into the network and turn it on,
we boot from a Linux USB key which NFS mounts a “root
filesystem” and then starts running a CSG-custom installation
and maintenance system, entirely written in Perl.

First, this chooses which disk(s) to use as the boot disk.
Then it partitions those disks using whichever partitioning scheme
the machine’s host class info indicates should be used (the
partitioning scheme is written in Perl too), optionally creates
Linux logical volumes on the partitions, creates filesystems on
those partitions/logical volumes, and mounts them.
Then it replicates the NFS root filesystem to the fresh root
filesystem, and switches into it.

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 10 / 11

How CSG use Perl

Continuing:

Then successive maintenance scripts copy in numerous
configuration files (universal to DoC, or specific to the machine’s
host classes), and install hundreds (servers) or thousands
(desktops) of packages - selecting the appropriate package list for
that type of machine (via host classes).
Finally, the machine boots, and on first proper boot is a full
member of DoC, running the right services, having the right
packages, knowing about DoC users etc etc.
The maintenance system regularly runs thereafter, keeping the
machine up to date, installing new kernels, new packages,
tweaking config files when we decide they need tweaking, etc etc.

Lexis, our locally developed exam lockdown system, is
entirely written in Perl - the client code that chats the Lexis
custom protocol, the Lexis server (that uses Perl threads!), and a
separate Perl/Tk status monitor.

Plus a million Perl “helper” scripts, Perl one liners.

Conclusion: Perl code runs DoC.

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 11 / 11

	Contents
	Fifth Lecture extra notes
	DBI films example, handling null/undef better

	Sixth Lecture extra notes
	Person and Programmer Generalisation (programmer-v4)
	More Chaining (programmer-v4)

	Moose: a new OO system for Perl
	Moose version of Person (mooseperson-v1)
	Moose version of Programmer (mooseprogrammer-v1)

	How CSG use Perl

