Perl Short Course: Some Extra Notes

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2015

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015

Fifth Lecture extra notes DBI films example, handling null/undef better

@ In the DBI films example eg6, slide 19, we found a problem: one
film record had a null length field (which became undef in Perl).

This caused a warning, which we fixed in the lecture by:

while(my $record = $sth->fetchrow_hashref)

print "Title: $record->{title}\n";
print "Director: $record->{director}\n";
print "Origin: $record->{origin}\n";
print "Made: $record->{made}\n";

my $length = $record->{length} // ’’;
print "Length: $length\n";
print "-" x 30 . "\n";

}

$sth->finish;

@ Perhaps any of the fields could have been null, could we deal
with all of them better? Sounds like a job for map!

while(my $record = $sth->fetchrow_hashref)
{
my($title, $director, $origin, $made, $length) =
map { $record->{$_} // >’ }
quw(title director origin made length);

print "Title: $title\n";
print "Director: $director\n";
print "Origin: $origin\n";
print "Made: $made\n";
print "Length: $length\n";
print "-" x 30 . "\n";

}

$sth->finish;

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015

@ Here's some material that got removed from the Perl course, or
never quite made it - might be interesting:

o Fifth Lecture: DBI films example, handling null/undef better
e Sixth Lecture: Person and Programmer version 4
e Moose: a new OO system for Perl
e How CSG use Perl
Perl Short Course: Some Extra Notes January 2015 2/11
@ Or, if you preferred, use map to generate a new hash:
while(my $record = $sth->fetchrow_hashref)
my %f = map { $_ => $record->{$_} // ’’ } keys %$record;
print "Title: $f{title}\n";
print "Director: $f{director}\n";
print "Origin: $f{origin}\n";
print "Made: $f{made}\n";
print "Length: $f{length}\n";
print "-" x 30 . "\n";
}
$sth->finish;
@ Or we could use a procedural map to modify %$record:
while(my $record = $sth->fetchrow_hashref)
map { $record->{$_} //= ’’ } keys Yrecord;
print "Title: $title\n";
print "Director: $director\n";
print "Origin: $origin\n";
print "Made: $made\n";
print "Length: $length\n";
print "-" x 30 . "\n";
}
$sth->finish;
@ Whichever way we decide to do it, we might want our general
sal_foreach() TUNCtion to do such de-nulling once and for all.
Perl Short Course: Some Extra Notes January 2015 4/11

Duncan White (CSG)

Sixth Lecture extra notes Person and Programmer Generalisation (programmer-v4)

@ In the sixth lecture, we presented a lengthy class example about

people (class Person) with names, sexes and ages, and
programmers (subclass Programmer) with additional
programming language skills.

Our final version programmer-v3 got Duncan'’s skills back by
using constructor chaining.

Isn't there a better way? Well, the only thing varying per-class
appears to be the set of data fields which we want to initialize,
and their default values. Remove Programmer’s constructor,
and generalise Person’s constructor as follows:

fun new($class, %arg) {
my $obj = bless({}, $class);
my %default = $obj->_defaultvalues;
while(my($datum,$value) = each(¥default))
{
$obj->{$datum} = $arg{$datum} // $value;

return $obj;

}

@ Now, each class defines a private _aetauitvaineso method, listing the

default values of all the initializable data fields:
method Person::_defaultvalues { return (NAME=>"Shir1ey", SEX=>"f", AGE=>26); }

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015

Moose: a new OO system for Perl Moose version of Person (mooseperson-v1)

As an alternative to Perl's nesso based objects and classes, developers
have built 1ose, a whole new OO system for Perl.

could be written:

package MoosePerson;

use strict;

use warnings;

use Function::Parameters qw(:strict);
use Moose;

has ’name’ => (is => ’rw’, isa => ’Str’, default => ’Shirley’);
has ’sex’ => (is => ’rw’, isa => ’Str’, default => ’f’);

has ’age’ => (is => ’rw’, isa => ’Int’, default => 26);

method as_string

{
my $class = ref($self);
my $name = $self->name;
my $age = $self->age;
my $sex = $self->sex;
return "$class(name=$name, age=$age, sex=$sex)";
}
stringification
use overload ’""’ => \&overload_as_string;
fun overload_as_string($list, $x, $y) # don’t care about last 2 params
{
return $list->as_string;
}
1;

Perl Short Course: Some Extra Notes January 2015

5/ 11

@ To give you a flavour of what weese can do, lecture 6's Person class

7/11

SRR RIGHICRSNIEIIESI More Chaining (programmer-v4)

o Continuing:

method Programmer::_defaultvalues
{

return (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"});
}

@ These methods allow a single generic person::new cOnstructor to
initialize all the desired data fields. Of course, we are still

repeating all the defaults in each subclass.

o Can we fix this? Yes, but back to method chaining!

method Programmer::_defaultvalues {
my %default = $self->Person::_defaultvalues;
$default{SKILLS} = { java => "ok" };
return %default;

}

@ More generically, we can write the chained method call as:

my %default = $self->SUPER::_defaultvalues;

to call the first available parental _setauitvaiueso method.

@ This is the final version programmer-v4 in the Lecture 6 tarball.

Duncan White (CSG) Perl Short Course: Some Extra Notes

Moose: a new OO system for Perl Moose version of Person (mooseperson-v1)

@ The example program (eg?2) is virtually unchanged (only change:

the new parameter keys are now lower-case):

use MoosePerson;

my $dunc = MoosePerson->new(name => "Duncan", age => 45, sex => "m");
print "$dunc\n";

$dunc->age(20); $dunc->name("Young dunc");

print "$dunc\n";

@ Let's see a Moose version of Programmer:

package MooseProgrammer;

use strict;

use warnings;

use Function::Parameters qw(:strict);
use Moose;

extends ’MoosePerson’;
has ’skills’ => (

is => ’rw’,

isa => ’HashRef’,

default => sub { return { java => ’ok’ } },
)5
method skills_as_string {

my $sk = $self->skills;

additional method

my @str = map { sprintf("%s:%s", $_, $sk->{$_}) } sort(keys(%$sk));

return "{" . join(", ", @str) . "}";
}
around ’as_string’ => fun($orig, $self) {
my $pers = $self->$orig(e_); $pers =~ s/ \)$//;
my $skills = $self->skills_as_string;
return "$pers, skills=$skills)";
}
1;

Duncan White (CSG) Perl Short Course: Some Extra Notes

6/ 11

8/ 11

Moose: a new OO system for Perl Moose version of Programmer (mooseprogrammer-v1) How CSG use Perl

. . CSG use Perl a great deal:
o Inherltance IS done through the extends ’ParentClass’ SyntaX. Moose alSO

. . . @ When we unpack a new machine, we enter inventory, hostname,
offers nice method wrapping - arema is one such feature.

IP address and MAC address details into a Postgres database -
via a web database interface (a Perl CGl script). We also
add configuration information about the new desktop in another

@ Let's see a Moose version of eg3a:

use MooseProgrammer;
my $dunc = MooseProgrammer->new(name => "Duncan", age => 45, sex => "m",

e veotiker, database table (host classes, what type of machine it is) and do a
B ket small amount of extra configuration.

j yJave > tmininalt @ When we plug the new machine into the network and turn it on,
print “$duwcwn’; we boot from a Linux USB key YVhICh NFS mounts a “root _
$dunc->nane ("Young dunc"); filesystem” and then starts running a CSG-custom installation
S oo 0 > Tgood, Tprologh = Tgood®) and maintenance system, entirely written in Perl.

o First, this chooses which disk(s) to use as the boot disk.

@ As expected, when run, that says: o Then it partitions those disks using whichever partitioning scheme
MooseProgrammer (name=Duncan, age=45, sex-m, skills={C:godlike, C++:ok, java:minimal, perl:godlike}) the machine’s host class info indicates should be used (the
MooseProgrammer (name=Young dunc, age=20, sex=m, skills={C:good, prolog:good}) partitioning scheme is written in Per] too), optionally creates

@ moose also supports user-defined types, roles, delegation etc. It Linux logical volumes on the partitions, creates filesystems on
does seem genuinely easier to use than blessed reference OO, and those partitions/logical volumes, and mounts them.

o Then it replicates the NFS root filesystem to the fresh root
filesystem, and switches into it.

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 9/11 Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 10 / 11

does a lot of the boilerplate dull stuff for you.

How CSG use Perl

o Continuing:

e Then successive maintenance scripts copy in numerous
configuration files (universal to DoC, or specific to the machine's
host classes), and install hundreds (servers) or thousands
(desktops) of packages - selecting the appropriate package list for
that type of machine (via host classes).

e Finally, the machine boots, and on first proper boot is a full
member of DoC, running the right services, having the right
packages, knowing about DoC users etc etc.

e The maintenance system regularly runs thereafter, keeping the
machine up to date, installing new kernels, new packages,
tweaking config files when we decide they need tweaking, etc etc.

o Lexis, our locally developed exam lockdown system, is
entirely written in Perl - the client code that chats the Lexis
custom protocol, the Lexis server (that uses Perl threads!), and a
separate Perl/Tk status monitor.

@ Plus a million Perl “helper” scripts, Perl one liners.

@ Conclusion: Perl code runs DoC.

Duncan White (CSG) Perl Short Course: Some Extra Notes January 2015 11 /11

	Contents
	Fifth Lecture extra notes
	DBI films example, handling null/undef better

	Sixth Lecture extra notes
	Person and Programmer Generalisation (programmer-v4)
	More Chaining (programmer-v4)

	Moose: a new OO system for Perl
	Moose version of Person (mooseperson-v1)
	Moose version of Programmer (mooseprogrammer-v1)

	How CSG use Perl

