Introduction to Perl: Seventh Lecture

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2015

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 1/22

@ Most programmers come to Perl from imperative/OO languages
like C and Java, so there's a tendency to use Perl as a Super C.

@ But Perl has many functional programming techniques which we
can use in our own programs:

map and grep

code references for higher-order functions

passing functions around as values

data-driven programming: coderefs in data structures
coderefs are closures

function factories: functions that return functions!
iterators, finite and infinite

currying

lazy evaluation - handling infinite Linked lists

®© 6 6 6 6 6 6 o o

@ So in this lecture, I'm going to try to persuade you that Perl is a
functional language. Well, sort of.

@ |I'm using the new runction: :paraneters Syntax throughout.

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 2/22

Functional Programming Techniques Most obvious: map and grep

@ We've already seen Perl’s built-in map and grep operators,
enabling you to transform every element of a list, or select
interesting elements from a list, but we haven't stressed that
these are higher order functions.

@ For example, egl:

my Qorig = (1,2,3,4); #1,2,3,4

my Qdouble =map { $_ * 2 } Qorig; # 2,4,6,8

my Qtwicelong = map { $_, $_ * 2 } Qorig; #1,2,2,4,3,6,4,8

my %doublehash = map { $_ => $_ * 2 } Qorig; # 1=>2, 2=>4, 3=>6, 4=>8

my @dd = grep { $_ % 2 == 1 } @orig; my $odd=join(’,’,@odd); # (1,3)
my @even = grep { $_ % 2 == 0 } Qorig; my $even=join(’,’,Q@even);# (2,4)
print "odd: $odd, even: $even\n";

my @q = grep { my $r=int(sqrt($_)); $r*$r == $_ } Qorig; # (1,4)

my $sq = join(’,’,@sq);
print "sq: $sq\n";

@ Recall that map and grep are roughly:

map OP ARRAY is grep OP ARRAY is
my @result = (); my Qresult = ();
foreach (ARRAY) foreach (ARRAY)
{ {
push @result, OP($_); push @result, $_ if OP($_);
} }

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 3/22

Functional Programming Techniques Functions as First Order Citizens

Duncan White (CSG)

The most fundamental Functional Programming concept is
passing functions around as values.

You can do this in Perl using a coderef, a reference to a function.

Like a pointer to a function in C terms.

For example: eg2 and eg3:
fun double_scalar($n)
¢ return $n * 2;
¥
my $coderef = \&double_scalar;
TIME PASSES...

my $scalar = $coderef->(10);

print "scalar: $scalar\n";

fun double_array(@x)

¢ return map { $_ * 2 } Ox;
}

my $coderef = \&double_array;

TIME PASSES...

my Qarray = $coderef->(1, 2, 3);

my $str = join(’,’,@array);
print "array: $str\n";

Produces 20 and (2,4,6) as output.

Note that a considerable amount of time may pass between
taking the reference and invoking the referenced function,
symbolised by TIME PASSES above.

Introduction to Perl: Seventh Lecture

January 2015

4/ 22

Functional Programming Techniques Functions as First Order Citizens

o Can generalise this to eg4:
fun double_scalar($n)

return $n * 2;

}
fun double_array(@x)
{
return map { $_ * 2 } Ox;
}

fun apply($coderef, Qargs)
{

return $coderef->(Qargs);

}

my $scalar = apply(\&double_scalar, 10);
print "scalar: $scalar\n";

my Q@array = apply(\&double_array, 1, 2, 3);
my $str = join(’,’,Qarray);
print "array: $stri\n";

@ The results are the same as before.

@ Do we need to name little helper functions like douie_scarary that
are only used to make a coderef via \udowic_scarar ! NoO!

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 5/22

Functional Programming Techniques Functions as First Order Citizens

o Use anonymous coderefs as in egh:

fun apply($coderef, Qargs)
{

return $coderef->(Qargs);

}

my $scalar = apply(fun ($x) { return $x * 2 }, 10);
print "scalar: $scalar\n";

my Qarray = apply(fun (0x) { returnmap { $_ * 2 } &x }, 1, 2, 3);

my $str = join(’,’,0Qarray);
print "array: $str\n";

o If we add a prototype to appiyo Via:
fun apply($coderef,Qargs) : (&) # or sub (20) { my($coderef,Oargs)=0_;..
(Here, & tells Perl the given argument must be a coderef.)
@ Then add the following inside app1y0:
local $_ = $args[0];
(10ca1 Saves the old value of the global $_, before setting it to the
given value, the new value persists until appiyo returns when the
old value is restored.)
@ Now we can write map like code using $_ in a code block:

my $scalar = apply { $_ * 2 } 10;

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 6 /22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

@ Coderefs can be built into data structures such as:

my %op = (
'+ => fun ($x,$y) { return $x + $y },
’=> => fun ($x,$y) { return $x - $y 1},
’x => fun ($x,$y) { return $x * $y I},
’/? => fun ($x,8y) { return $x / $y },
);

@ Then a particular coderef can be invoked as follows:

my $operator = "x"; my $x = 10; my $y = 20;
my $value = $op{$operator}->($x, $y);

@ Use to build a Reverse Polish Notation (RPN) evaluator:

fun eval_rpn(@atom) # each atom: operator or number
{
my @stack; # evaluation stack
foreach my $atom (@atom)
{
if ($atom =~ /"\d+$/) # number?
{
push @stack, $atom;
} else # operator?
{

die "eval_rpn: bad atom $atom\n" unless exists $op{$atom};
my $y = pop @stack; my $x = pop @stack;
push @stack, $op{$atom}->($x, $y);
}
}
return pop @stack;

}

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015

7/ 22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

@ The above RPN evaluator, with some more error checking and
example calls such as:
my $n = eval_rpn(qw(l 2 3 * + 4 - 5 %));
is egh. Try it out.

@ This technique is often called data-driven or table-driven
programming, very easy to extend by modifying the table.

e For example, add the following operators (giving eg7):

my %op = (
%’ => fun ($x,$y) { return $x % $y },
[l => fun ($x,$y) { return $x ** $y },
> => fun ($x,$y) { return $x > $y 71 : 0 },
’swap’ => fun ($x,8$y) { return ($y, $x) I},

)
@ %, ~ and > are conventional binary operators, but note that swap
takes 2 inputs and produces 2 outputs - the same two, swapped!

@ This works because whatever the operator returns, whether one
or many results, is pushed onto the stack.

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 8 /22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

@ To vary the number of inputs each operator takes, change the
data structure and code slightly (giving eg8).

o First, change the data structure:

my %op = (
140 => [2, fun ($x,$y) { return $x + $y } 1,
[=> [2, fun ($x,8y) { return $x - $y } 1,
1% => [2, fun ($x,8y) { return $x * $y } 1,
2/ => [2, fun ($x,$y) { return $x / $y } 1,
=> [2, fun ($x,8y) { return $x % $y } 1,

)'y.l

)

@ Here, each hash value is changed from a coderef to a reference to
a 2-element list, i.e. a 2-tuple, of the form: [no_ot_args, code_ref 1.

@ So each existing binary operator o -> function pair becomes:

op => [2, function]

@ But now we can add unary and trinary ops as follows:

my %op = (
‘neg’ => [1, fun (80 { - $x } 1,
’sqrt’ => [1, fun ($x) { sqrt($x) } 1,
’ifelse’ => [3, fun ($x,3y,%$2) { $x 7 $y : $z } 1,

);

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 9 /22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

@ The operator invocation code changes to:
my($nargs, $func) = @{$op{$atom}};
my $depth = @stack;
die "eval_rpn: stack depth $depth when $nargs needed\n"
if $depth < $nargs;
my Qargs = reverse map { pop @stack } 1..$nargs;
push @stack, $func->(@args);

(] The args = reverse map {pop} 1..n |ine iS COO|:—)
@ We can now write a call such as:

my $n = eval_rpn(quw(7 5 * 4 8 * > 1 neg 2 neg ifelse));

@ This is equivalent to the more normal expression:

if (75 > 4x8) -1 else -2
@ Which, because 35 > 32, gives -1.
e Change the 5 to a 4, this (because 28 <= 32) gives -2.

@ One could make further extensions to this RPN calculator, in
particular variables could be added easily enough (store them in a
hash, add get and set operators). But we must move on.

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 10 / 22

Functional Programming Techniques Functions returning Functions: Closures and lterators

@ So far, we've only seen passing coderefs into functions.

@ However, you can write a function factory which constructs and
returns a coderef. For example:

fun timesn($n)

return fun ($x) { return $n * $x };

¥

@ winesnany delivers a newly minted coderef which, when it is later
called with a single argument, multiplies that argument by N.
e For example (eg9):

my $doubler = timesn(2);
my $d = $doubler->(10); # 20

my $tripler = timesn(3);
my $t = $tripler->(10); # 30

print "d=$d, t=$t\n";

@ Subtlety: in C at runtime, a function pointer is simply a machine
address. In Perl, a coderef is a closure: a machine address plus a
private environment. In this case, each tiresny call has a different
local variable $n which the coderef must remember.

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 11 /22

Functional Programming Techniques Functions returning Functions: Closures and lterators

@ Objection 1: the previous example only used one coderef at a
time. Replace the calls as follows (eg10):

timesn(2);
timesn(3);

my $doubler
my $tripler

foreach my $arg (@ARGV)

{
my $f = $argh2 == 1 ? $doubler : $tripler;
my $x = $f->($arg);
print "f->($arg)=$x\n";

}

@ Here, we select either the doubler or the tripler based on dynamic
input - the doubler if the current command line argument is odd,
else the tripler. So eg0 1 2 3 4 generates 2 6 6 12.

@ Objection 2: $n was a known (constant) value when the coderef
was built. Did Perl rewrite it as a constant?

@ We can disprove this idea - a coderef can change it’s
environment!
fun makecounter ($n)

{

return fun { return $n++ };

}

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 12 / 22

Functional Programming Techniques Functions returning Functions: Closures and lterators

o TO USE€ makecounter () erte (eg].].)

my $c1 = makecounter(10);

my $v;

$v = $c1->(); print "ci: $v\n"
$v = $c1->(); print "cl: $v\n";
$v = $c1->(); print "ci: $v\n"

@ Every time $c1 is called, it retrieves the current value of it's
private variable $n, increments it for next time, and returns the
previous value. So we get 10 11 12.

o This is a special type of closure called an iterator. Calling an
iterator to deliver the next value is called kicking the iterator.

@ Objection 3: anyone can juggle one ball. Can you have more
than one counter? Yes! egl2 shows this:

my $cl1 = makecounter(10);

my $c2 = makecounter(100);

my $v;

$v = $c1->(); print "ci: $v\n"; # 10

$v = $c1->(); print "cil: $v\n"; # 11

$v = $c2->(); print "c2: $v\n"; # 100
$v = $c1->(); print "ci: $v\n"; # 12

$v = $c2->(); print "c2: $v\n"; # 101
$v = $c1->(); print "ci: $v\n"; # 13

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015

13 /22

Functional Programming Techniques Functions returning Functions: Closures and lterators

@ So far, our iterators have generated infinite sequences. But an
iterator can terminate when it finishes iterating (like cacs):

@ Return uwder as a sentinel to inform us that the iterator has
finished. For example:
fun upto($n, $max)
return fun {
return undef if $n > $max;

return $n++;

}

e Call this with code like (egl3):

my $counter = upto(1, 10);
while(my $n = $counter->())
{

print "counter: $n\n";

}

@ When run, this counts from 1 to 10 and then stops. Multiple
counters work fine - because the closure environment includes $n
and $max - egl4 shows an example (omitted here).

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 14 / 22

Functional Programming Techniques Functions returning Functions: Closures and lterators

@ Easy to define map and grep for iterators:

#

$it2 = map_i($op, $it): Equivalent of map for iterators.

Given two coderefs ($op, an operator, and $it, an iterator),

return a new iterator $it2 which applies $op to each value
returned by the inner iterator $it.
#
f
{

un map_i($op, $it) :(&$)
return fun {
my $v = $it->Q);
return undef unless defined $v;
local $_ = $v;
return $op->($v);
};
}

e Now, we can write (egl5):

my $lim = shift QARGV || 10;
my $scale = shift QARGV || 2;

my $c = map_i { $_ * $scale } upto(1, $lim);

while(my $n = $c->O)) { print "$n,"; }
print "\n";

@ When run with 1in-10, scare=3, this produces:
3,6,9,12,15,18,21,24,27,30,

@ grep_iGsop, $ivy IS NOt much more complicated, egl6 shows it
(omitted here).

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 15 / 22

Functional Programming Techniques Functions returning Functions: Currying

@ A hard-core functional programming feature is Currying: the
ability to partially call a function - to provide (say) a 3-argument
function with it's first argument and deliver a 2-argument
function.

@ Simple to do:
fun curry($func, $firstarg)
return fun {
return $func->($firstarg, @_);

¥
¥

e Call this with code like (egl7):
fun add($a,$b) { return $a + $b };
my $plus4 = curry(\&add, 4); # an "add 4 to my arg" func

my $x = $plusd->(10); # x=10+4 i.e. 14
print "x=$x\n";

@ As expected, the $plus4 function acts exactly as an add 4 to my
single argument function, delivering 14 as the result.

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 16 / 22

Functional Programming Techniques Lazy Evaluation

@ One of the coolest features of functional programming languages
is lazy evaluation - the ability to handle very large or even
infinite data structures, evaluating only on demand.

@ It's surprisingly easy to add laziness in Perl:

o Let’s extend last lecture's linked List module to work with /azy
linked lists (sometimes known as streams).

@ Only one design change is needed: allow a list tail to either be an
ordinary nil-or-cons list or a coderef - a promise to deliver the
next part of the list (whether empty or nonempty) on demand.

@ When siist->neaatainoy splits a node into head s and tail s:, need to
detect (Via retse) eq cover) Whether s is a promise (coderef).

o If sc is a promise, we force the promise: invoke the promise

function, delivering the real nil-or-cons tail list:

my($h, $t) = @$self;
$self->[1] = $t = $t->() if ref($t) eq "CODE"; # FORCE A PROMISE
return ($h, $t);

@ Note that after forcing the promise, we assign the result back
into sse1t->r11 in case the same list node is re-evaluated later.

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 17 / 22

Functional Programming Techniques Lazy Evaluation

o Note: a lazy list may be finite or infinite. Given an infinite list
$inflist. $inflist->len, $inflist->rev and $inflist->append($second_list) W||| never
terminate. This can't be solved - it's inevitable!

@ Fortunately, we have already engineered the concept of “show
only the first N elements” into sinfiist->as_string0 SO that's ok.

@ Perhaps we should set the system-wide limit to a reasonably large
value, rather than leaving it zero (meaning unlimited):

our $as_string limit = 40;

@ Having modified and syntax checked List.pm, check that it still
works with lists with no promises - i.e. non lazy lists (egl8):

use List;
$List::as_string_limit = 8;

list_upto: return a non-lazy list of numbers between $min and $max
fun list_upto($min, $max)
{

return List->nil() if $min > $max;

return List->cons($min, list_upto($min+1, $max));

}

my $list = list_upto(100, 200);
print "first few elements of upto(100,200) List: $list\n";

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 18 / 22

Functional Programming Techniques Lazy Evaluation

@ Then, give it a lazy list (egl9) by adding a s o of sw o coderef
wrapper on the list_upto($min+1,$max) Ca”

return List->cons($min, fun { list_upto($min+1, $max) });

o Without this, it was a conventional recursive function to generate
a list. By delaying the recursive call until it's actually needed, we
make it lazy.

@ In this case, despite producing identical output, the lazy version
never computes or stores elements 108..200.

o Can define map-like and grep-like operators for lazy lists. Here's

map_1($op, $list).
return List->nil() if $list->isnil;
my($h, $t) = $list->headtail;
local $_ = $h; # set localised $_ for op
return List->cons($op->($h), fun { map_1($op, $t); });

@ Note that we've not made this a method, as we prefer to keep
the map-like syntax rather than swap the arguments around in
order to have the list (object) as the first argument. Instead
we've given it a non clashing name and exported it.

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 19 / 22

Functional Programming Techniques Lazy Evaluation

@ grep_1($op, $list) iS:

while(! $list->isnil)

{
my($h, $t) = $list->headtail;
local $_ = $h; # set localised copy of $_
if ($op->($h)) # for the filter operation call
{
return List->cons($h, fun { grep_1($op, $t) });
$list = $t;
s

return List->nil;

@ Using map_1¢sop, s11st) and grep_1(sop, s115t), We can write rather pretty
mathematical-style code. For example, start with an infinite list
of odd numbers (eg20):

use List;
$List::as_string_limit = 8;

$list = stepup($n, $step) - return an infinite list n, n+step, n+2*step...
fun stepup($n, $step)
{

return List->cons($n, fun { stepup($n+$step,$step); });
}

my $odds = stepup(1, 2);
print "first few odds: $odds\n";

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 20 / 22

Functional Programming Techniques Lazy Evaluation
@ Which produces:

first few odds: [1,3,5,7,9,11,13,15,17,19...]

@ Now generate an infinite list of even numbers by:

my $evens = map_1 {$_ + 1} $odds;
print "first few evens: $evens\n";

Unsurprisingly, this produces:

first few evens: [2,4,6,8,10,12,14,16,18,20...]

@ Now select only even numbers greater than 7:
my $evengt7? = grep_1l {$_ > 7} $evens;

Which produces:

first few even gt7: [8,10,12,14,16,18,20,22,24,26...]

o Finally, select the subset that are exact squares:
my $squares = grep_l { my $r = int(sqrt($.)); $r*$r == $_ } $evengtT7;

Which produces:

first few even perfect squares > 7: [16,36,64,100,144,196,256,324,400,484...]

@ Of course, this sequence of calls could be written as (eg20a):

my $evensgt?
my $squares

stepup(8, 2);
grep_l { my $r = int(sqrt($_)); $r*$r == $_ } $evensgt7;

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 21 /22

Functional Programming Techniques Lazy Evaluation

@ Can provide a merge_1¢ semp, $115t1, 811562) list operator to merge two

sorted lists using a sort-like comparator, and using it (eg21):

my $odds = stepup(1, 2);
my $evens = stepup(2, 2);
my $all = merge_1l { $a <=> $b } $odds, $evens;

What do you get it by merging odd and even integers? All
integers!
@ A better example might be (eg22):

$list = power($n, $p) - return an infinite list n, n*p, nxp~2..
fun power($n, $p)

{
return List->cons($n, fun { power($nx$p,$p); });
¥
my $twos = power(1, 2); # powers of 2
my $threes = power(1, 3); # powers of 3
my $fives = power(1, 5); # powers of 5
my $m23 = merge_1 { $a <=> $b } $twos, $threes;
my $m235 = merge_l { $a <=> $b} $m23, $fives;
my $all =grep.1 { $_ > 1} $m235;

print "first few merged values: $all\n";

@ Here's a use for currying the comparator into nerge1 (€g22a):

my $numeric_merge = curry(\&merge_l, fun { $a <=> $b });
my $m235 = $numeric_merge->($numeric_merge->($twos, $threes), $fives);
my $all =grep.1 { $_ > 1 } $m235;

Duncan White (CSG) Introduction to Perl: Seventh Lecture January 2015 22 /22

	Contents
	Functional Programming Techniques
	Most obvious: map and grep
	Functions as First Order Citizens
	Data-Driven Programming: Coderefs in Data Structures
	Functions returning Functions: Closures and Iterators
	Functions returning Functions: Currying
	Lazy Evaluation

