
Introduction to Agile
Software Development

302

@rchatley #doc302 

Dr Robert Chatley - rbc@doc.ic.ac.uk

In this section we introduce a style of software
development that is currently prevalent in the industry.
Most teams developing software commercially follow
these practices to some degree.	

!
To effectively deliver your Group Projects, you will likely
want to adopt some of these methods and techniques. We
will illustrate different techniques, but you will want to
read and research further to choose something that is
appropriate for your project.

#doc302 

Waterfall Development

photo: stefg74

Winston W. Royce wrote a paper in 1970 called
“Managing the Development of Large Software Systems”.
Unfortunately this paper was somewhat misinterpreted by
the industry at large, and what emerged was the Waterfall
Model of software development. It set out a number of
different phases of software design and implementation,
which in the Waterfall model flow from one to the other
sequentially.	

!
One of the problems with this is that we only get one shot
at getting things right - there isn’t much scope for going
back and reworking things after a phase ends. As it
happens, this wasn’t actually what Royce meant when he
wrote the original paper, but it was what people took from
it and it stuck for quite a few years.	

#doc302 

Requirements Design Coding Testing Deployment Released

Cost of Change

Projects developed according to the waterfall model
proceed through phases, from requirements analysis,
through design, implementation and testing, until they are
released. The later a defect is detected and fixed, the more
expensive it is, so much effort is put in to analysis phases
early on. Unfortunately, Waterfall has not proved a good
model for software projects, with many being delivered
late or going over budget.	

!
This graph shows the Cost of Change curve by Barry
Boehm, described in “Software Economics”, written in the
1980s. It shows how if a change of requirements (or a
bug) is detected early then it is relatively cheap to make
this change (maybe the code is not written yet). But if the
change comes up late in the project, it can be very
expensive to rework things.	

!
Following this model, engineers spent a lot of time on
analysis and requirements early in the project to try and

#doc302 

Requirements Design Coding Testing Deployment Released

Cash

One problem with releasing at the end of the project, once
everything is finished, is that no value is returned by the
project until the end. For the majority of the life of the
project, we are spending money, but not making any
money back.	

!
In terms of projects like your Group Projects, if we only
have one delivery point at the end, it makes the project
very risky. How will we know whether or not we are
building the right thing and if people are happy with it?
What if we miss the deadline and do not deliver a working
system?

#doc302 

Agile methods favour an iterative approach. Rather than
proceeding in phases, we iteratively design, build and
release small sets of features. We aim to deliver value
from the first release, which should be early in the project.	

!
Agile tries to reduce the time between someone having an
idea and its implementation in software that can be used.
We compress the development waterfall to a succession of
small cycles, which we perform iteratively over and over
again.	

!
The first release happens sooner, meaning that our
software can start generating revenue earlier. This is
cumulative, so if we prioritise high value features first, we
should quickly get a return on investment. If we don’t,
perhaps the best outcome is to cancel the project - early!	

!
We also increase the speed and frequency with which we
learn/validate something about what the customer (really)

#doc302 

We want to make these cycles small, so that we can get
feedback as early and often as possible. But we do not
want to sacrifice any of the engineering rigour that goes
into making a reliable, well-tested, product.	

!
To do this, we compress the analysis-code-test-release
cycle, and perform it many times during the project. Each
of these iterations lasts a short period of time, typically a
week, perhaps a few weeks on large projects, and
increasingly commonly, much less than a week in some
highly dynamic environments.

http://agilemanifesto.org/

The Agile Manifesto (http://agilemanifesto.org) was
drawn up by some pioneers in the field, in 2001. It does
not define a particular method, but gives some overriding
principles that the authors though would lead to effective
software development practice.	

!
They wanted to focus on improving the way that people
interacted and communicated to build the right software,
rather than necessarily building processes and tools, or
setting out the specification as a long document at the
beginning of the project that was hard to change later.
They wanted to favour delivering working software over
writing complex design documents. They acknowledged
that having some sort of a plan for a project was a good
idea, but that to deliver the best and most valuable
software, we should be happy to change that plan when
we get new information.

#doc302 

There are several different development methods or
processes that all come under the banner of agile. Here are
three:	

!
Extreme Programming (XP) is one of the original agile
methods, and works well for software projects. The
method includes project management techniques, as well
as technical practices to help us deliver reliable software
quickly.	

!
Scrum concentrates more on the project management
methods, and does not talk specifically about building
software.	

!
Kanban is a more recent method in software circles, that
gets rid of the timeboxed iterations from Scrum and XP,
and aims for a continuous flow of work. It is influenced by
Japanese manufacturing techniques, particularly from
companies like Toyota.	

#doc302 

http://www.theguardian.com/technology/video/2013/
jun/13/geeks-opened-up-government-video

Watch this Video

This video shows how agile practices have been put to use
by the Government Digital Service, a group working in
the UK civil service since 2011 re-engineering the
technology that allows the general public to interface with
government. The civil service has traditionally been a
slow-moving establishment, so it is interesting to hear the
benefits they have found from embracing quicker iteration
and modern methods.	

!
http://www.theguardian.com/technology/video/2013/jun/
13/geeks-opened-up-government-video

