
Imperial College London
Department of Computing

Software Performance Optimisation Group

Productive and Efficient

Computational Science Through

Domain-specific Abstractions

Florian Rathgeber

October 2014

Supervised by: Dr. David A. Ham, Prof. Paul H. J. Kelly

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing

of Imperial College London
and the Diploma of Imperial College London

Declaration

I herewith certify that all material in this dissertation which is not my own
work has been properly acknowledged.

Florian Rathgeber

The copyright of this thesis rests with the author and is made available
under a Creative Commons Attribution Non-Commercial No Derivatives
licence. Researchers are free to copy, distribute or transmit the thesis on
the condition that they attribute it, that they do not use it for commercial
purposes and that they do not alter, transform or build upon it. For any
reuse or redistribution, researchers must make clear to others the licence
terms of this work.

i

Abstract

In an ideal world, scientific applications are computationally efficient,
maintainable and composable and allow scientists to work very produc-
tively. We argue that these goals are achievable for a specific application
field by choosing suitable domain-specific abstractions that encapsulate
domain knowledge with a high degree of expressiveness.

This thesis demonstrates the design and composition of domain-specific
abstractions by abstracting the stages a scientist goes through in formulat-
ing a problem of numerically solving a partial differential equation. Do-
main knowledge is used to transform this problem into a different, lower
level representation and decompose it into parts which can be solved us-
ing existing tools. A system for the portable solution of partial differential
equations using the finite element method on unstructured meshes is for-
mulated, in which contributions from different scientific communities are
composed to solve sophisticated problems.

The concrete implementations of these domain-specific abstractions are
Firedrake and PyOP2. Firedrake allows scientists to describe variational
forms and discretisations for linear and non-linear finite element prob-
lems symbolically, in a notation very close to their mathematical mod-
els. PyOP2 abstracts the performance-portable parallel execution of local
computations over the mesh on a range of hardware architectures, tar-
geting multi-core CPUs, GPUs and accelerators. Thereby, a separation
of concerns is achieved, in which Firedrake encapsulates domain knowl-
edge about the finite element method separately from its efficient parallel
execution in PyOP2, which in turn is completely agnostic to the higher
abstraction layer.

iii

As a consequence of the composability of those abstractions, optimised
implementations for different hardware architectures can be automatically
generated without any changes to a single high-level source. Performance
matches or exceeds what is realistically attainable by hand-written code.
Firedrake and PyOP2 are combined to form a tool chain that is demon-
strated to be competitive with or faster than available alternatives on a
wide range of different finite element problems.

iv

To my family

v

Acknowledgements

I would like to express my thanks and gratitude towards all the people
who supported me throughout my PhD and the writing of this thesis.

Firstly, I would like to thank my supervisors David Ham, who has
guided my work throughout, inspired me with his passion and enthusi-
asm, provided helpful advice, support and vision, and was always ready
to share his vast knowledge – and opinions – and Paul Kelly, whose expe-
rience, patience and dedication were invaluable in keeping me on track.

Many thanks also to my examiners Marie Rognes and Gerard Gorman
for the challenging questions and inspiring discussion during my viva.

I was fortunate to share an office with my William-Penney colleagues
Graham Markall, Lawrence Mitchell, Fabio Luporini, Doru Bercea, Carlo
Bertolli, Andrew McRae and Francis Russell. Not only were they great col-
laborators on PyOP2 and Firedrake, enduring my pedantry when it comes
to keeping a clean commit history, but also always happy to discuss ideas
and help tracking down the odd bug. Graham’s work has always been
a great inspiration to me, already at the time I was working on my MSc
dissertation in Stockholm, which ultimately brought me to Imperial. He
is a pleasure to work with and I knew I could rely on him blindly, which
he would of course deny in his humble manner. Lawrence is not only
a fountain of productivity and knowledge, in particular when it comes
to anything related to solvers, but also has a near-psychic ability to track
down bugs. Fabio and Doru had the misfortune of starting at a time
where my code pedantry had already been establishes, but they coped
remarkably well. Their obsession with crocodiles was always a topic that
spurred discussions with any visitors to the office. Carlo was always a re-

vii

liable source of support, guidance and honest critique in his own unique
self-deprecating manner and was always reachable even after he left us
to work at IBM’s T.J. Watson research centre. Andrew preferred the com-
pany in the William-Penney lab to his colleagues in the maths department
and was a steady source of entertainment with his particular kind of hu-
mour and choice of (GitHub) user names. Behind the irony however there
is a very rigorous mathematical thinker with a critical eye, so don’t be
fooled. When not vehemently disagreeing with Fabio on the temperature
setting of the A/C, Francis mostly kept silently in the background, but
was a valuable source of advice for obscure and hard problems with C,
C++, systems architecture and Linux in general. He was unfortunately
drafted to work on other projects so we could not tap into his expertise
for Firedrake and PyOP2 as much as we would have liked.

Michael Lange and Christian Jacobs were regular participants in our
group meetings and invaluable contributors to Firedrake. Michael’s expe-
rience was very helpful to get up Firedrake up and running on various
different supercomputers. Colin Cotter was always a reliable source of
advice when I was out of my depth on the maths.

Not to forget my former AMCG neighbours Simon Funke, who is not
only a good friend, but also an inspiring discussion partner, occasionally
until late at night, and Patrick Farrell, who was always happy to share his
vast knowledge and provide ideas and advice in his uniquely direct way.

When starting my PhD in the Earth Sciences department I was warmly
welcomed by my first pod neighbours Johnny, Frank, Nikos, Eleni and
Liwei. Many thanks also go to Tim, Adam, Stephan, Alex, Jon, James,
Ben, Simon, Sam, Guiseppe and Dave for many discussions and advice.

I would further like to thank Fabio Luporini, Simon Funke and Carlo
Bertolli for helpful suggestions when proofreading parts of this thesis.

Lastly, this work would not have been possible without the constant en-
couragement and loving support of my family. Although distant spatially,
they were always there for me, kept a watchful eye on my well-being and
helped me through difficult times and with difficult decisions.

My research was funded by EPSRC Grant EP/I00677X/1: Multi-layered
abstractions for PDEs. I would further like to acknowledge the use of HPC
facilities at Imperial College as well as the UK national supercomputing
facility ARCHER.

viii

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/I00677X/1

Contents

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Overview . 1
1.3 Technical Contributions . 2
1.4 Dissemination . 3
1.5 Thesis Outline . 4

2 Background 5
2.1 The Finite Element Method . 5

2.1.1 Variational Problems . 6
2.1.2 Function Spaces . 8
2.1.3 Mapping from the Reference Element 9
2.1.4 The Lagrange Element . 9
2.1.5 The Discontinuous Lagrange Element 10
2.1.6 H(div) and H(curl) Finite Elements 11
2.1.7 Assembly . 12
2.1.8 Quadrature Representation 13
2.1.9 Tensor Representation . 15
2.1.10 Linear Solvers . 16
2.1.11 Action of a Finite Element Operator 17

2.2 Contemporary Parallel Hardware Architectures 18
2.2.1 Multi-core and Many-core Architectures 18
2.2.2 Contemporary GPU Architectures 20
2.2.3 Intel Xeon Phi (Knights Corner) 21
2.2.4 Performance Terminology . 21
2.2.5 Performance Considerations 22

2.3 Programming Paradigms for Many-core Platforms 24
2.3.1 NVIDIA Compute Unified Device Architecture (CUDA) . . 25
2.3.2 Open Computing Language (OpenCL) 26

ix

2.3.3 Partitioned Global Address Space (PGAS) Languages . . . 27
2.4 Conclusions . 28

3 High-level Abstractions in Computational Science 29
3.1 Library-based Approaches . 29

3.1.1 Portable, Extensible Toolkit for Scientific Computation (PETSc) 29
3.1.2 deal.ii: A General-Purpose Object-Oriented Finite Element

Library . 32
3.1.3 DUNE: Distributed and Unified Numerics Environment . . 32
3.1.4 Fluidity . 33
3.1.5 Nektar++ . 34

3.2 FEniCS . 34
3.2.1 DOLFIN . 35
3.2.2 UFL . 36
3.2.3 FFC . 39
3.2.4 FIAT . 41
3.2.5 UFC . 41
3.2.6 Instant . 42

3.3 OP2 . 42
3.3.1 Key Concepts . 42
3.3.2 Design . 43

3.4 Stencil Languages . 45
3.4.1 Stencil Computations on Structured Meshes 45
3.4.2 Halide . 46
3.4.3 Liszt . 46

3.5 Conclusions . 48

4 PyOP2 - A DSL for Parallel Computations on Unstructured Meshes 49
4.1 Concepts . 50

4.1.1 Sets and Mappings . 50
4.1.2 Data . 51
4.1.3 Parallel Loops . 54

4.2 Kernels . 56
4.2.1 Kernel API . 57
4.2.2 COFFEE Abstract Syntax Tree Optimiser 58
4.2.3 Data Layout . 59
4.2.4 Local Iteration Spaces . 61

4.3 Architecture . 62
4.3.1 Parallel Loops . 63
4.3.2 Caching . 64
4.3.3 Multiple Backend Support via Unified API 66

x

4.4 Backends . 67
4.4.1 Host Backends . 68
4.4.2 Device Backends . 70

4.5 Parallel Execution Plan . 77
4.5.1 Partitioning . 77
4.5.2 Local Renumbering and Staging 77
4.5.3 Colouring . 77

4.6 Linear Algebra interface . 79
4.6.1 Sparse Matrix Storage Formats 79
4.6.2 Building a Sparsity Pattern 80
4.6.3 Matrix Assembly . 82
4.6.4 GPU Matrix Assembly . 83
4.6.5 Solving a Linear System . 85
4.6.6 GPU Linear Algebra . 85
4.6.7 Vector Operations . 85

4.7 Distributed Parallel Computations with MPI 86
4.7.1 Local Numbering . 86
4.7.2 Computation-communication Overlap 87
4.7.3 Halo exchange . 88
4.7.4 Distributed Assembly . 88

4.8 Mixed Types . 89
4.8.1 Mixed Set, DataSet, Map and Dat 89
4.8.2 Block Sparsity and Mat . 89
4.8.3 Mixed Assembly . 91

4.9 Comparison with OP2 . 92
4.10 Conclusions . 94

5 Firedrake - A Portable Finite Element Framework 95
5.1 Concepts and Core Constructs . 96

5.1.1 Functions . 97
5.1.2 Function Spaces . 97
5.1.3 Meshes . 98
5.1.4 Expressing Variational Problems 99

5.2 Mixed Function Spaces . 101
5.2.1 Mixed Formulation for the Poisson Equation 102
5.2.2 Mixed Elements, Test and Trial Functions in UFL 103
5.2.3 Mixed Systems . 104
5.2.4 Splitting Mixed Forms . 106
5.2.5 Simplifying Forms . 107

5.3 Assembling Expressions . 110
5.3.1 Expression Compiler . 111

xi

5.3.2 Expression Splitting . 112
5.3.3 Expression Code Generation and Evaluation 113

5.4 Assembling Forms . 114
5.4.1 Assembly Kernels . 115
5.4.2 Assembling Matrices, Vectors and Functionals 115
5.4.3 Parallel Loops for Local Assembly Computations 116

5.5 Imposing Dirichlet Boundary Conditions 117
5.5.1 Assembling Matrices with Boundary Conditions 117
5.5.2 Boundary Conditions for Variational Problems 119
5.5.3 Boundary Conditions for Linear Systems 120

5.6 Solving PDEs . 120
5.6.1 Solving Non-linear Variational Problems 121
5.6.2 Transforming Linear Variational Problems 121
5.6.3 Non-linear Solvers . 122
5.6.4 Solving Pre-assembled Linear Systems 123
5.6.5 Preconditioning Mixed Finite Element Systems 124

5.7 Comparison with the FEniCS/DOLFIN Tool Chain 125
5.8 Conclusions . 128

6 Experimental Evaluation 129
6.1 Experimental Setup . 129
6.2 Poisson . 130

6.2.1 Problem Setup . 131
6.2.2 Results . 131

6.3 Linear Wave Equation . 135
6.3.1 Results . 136

6.4 Cahn-Hilliard . 139
6.4.1 Problem Setup . 140
6.4.2 Results . 141

6.5 Conclusions . 144

7 Conclusions 145
7.1 Summary . 145
7.2 Discussion . 148
7.3 Future Work . 149

7.3.1 Implementation of Fluidity Models on Top of Firedrake . . 149
7.3.2 Automated Derivation of Adjoints 149
7.3.3 Geometric Multigrid Methods 150
7.3.4 Scalability of Firedrake and LLVM Code Generation 150
7.3.5 Firedrake on Accelerators . 151
7.3.6 Adaptive Mesh Refinement 151

xii

Chapter 1

Introduction

1.1 Thesis Statement

The key to computationally efficient, maintainable and composable scien-
tific software in a specific domain is the composition of suitable domain-
specific abstractions, which encapsulate domain knowledge with a high
degree of expressiveness and enable scientists to conduct very productive
research without the need to be experts in their implementation.

1.2 Overview

Many scientific programs and libraries are islands, developed to solve a
very specific research problem for a specific kind of user on a particular
hardware platform. Performance, robustness, maintainability and extensi-
bility are frequently an afterthought and hard to achieve due to the design
of the software. Keeping up with a rapidly changing landscape of hard-
ware platforms, in particular in high-performance computing, is an uphill
battle and as a consequence, computational resources are not optimally
utilised. Furthermore it is often not feasible to port an application to a
different platform due to lack of expertise and resources.

This thesis demonstrates a novel approach of developing scientific soft-
ware for numerically solving partial differential equations. By abstracting
the stages a scientist goes through in formulating the problem, domain-
specific abstractions can be built and composed, which encapsulate do-
main knowledge of each stage with a high degree of expressiveness. This
knowledge is used to transform the problem into a different, lower level

1

representation and decompose it into parts which can be solved using ex-
isting tools. A system consisting of the abstraction layers Firedrake and
PyOP2 is formulated, in which contributions from different scientific com-
munities are composed to solve sophisticated problems.

Firedrake allows scientists to describe variational forms and discreti-
sations for linear and non-linear finite element problems symbolically in
a notation very close to their mathematical models. It is built on top of
PyOP2, which abstracts the performance-portable parallel execution of lo-
cal assembly kernels on a range of hardware architectures, and the FEniCS
components UFL and FFC. The presented framework unifies the goals of
performance, robustness, maintainability and extensibility.

1.3 Technical Contributions

The primary contribution of this thesis is the design and composition of
two abstraction layers for the portable solution of partial differential equa-
tions using the finite element method on unstructured meshes.

In Chapter 4, the design and implementation of PyOP2, a domain-
specific language (DSL) embedded in Python for performance-portable
parallel computations on unstructured meshes across different hardware
architectures, is presented. PyOP2 targets multi-core CPUs with OpenMP,
GPUs and accelerators with CUDA and OpenCL and distributed paral-
lel computations with MPI. At runtime, optimised, problem and backend
specific low-level code is generated, just-in-time (JIT) compiled and sched-
uled for efficient parallel execution.

PyOP2 is used as the parallel execution layer for Firedrake, a novel
portable framework for the automated solution of partial differential equa-
tions (PDEs) using the finite element method (FEM), presented in Chap-
ter 5. Firedrake uses the established Unified Form Language UFL [Alnæs
et al., 2014] to describe weak forms of PDEs, which are translated into
computational kernels by a modified version of the FEniCS Form Com-
piler FFC [Kirby and Logg, 2006]. Assembly operations are transformed
into local computations over mesh entities, and passed to PyOP2 for ef-
ficient parallel execution, while PETSc [Balay et al., 1997] is employed to
provide the unstructured mesh and solve linear and non-linear systems.

In Chapter 6, the versatility and performance of the approach is demon-

2

strated on a wide range of different finite element problems.
Some of the work presented has been undertaken in collaboration with

other researchers. PyOP2 draws inspiration from the OP2 framework,
mainly developed at the University of Oxford by Mike Giles, Gihan Mu-
dalige and Istvan Reguly. I am the primary contributor to PyOP2, respon-
sible for large parts of the overarching design, architecture and API speci-
fication, including the backend selection and dispatch mechanism (Section
4.3). Support for mixed types (Section 4.8) is entirely my contribution, as
are large parts of the code generation for the sequential and OpenMP
backends and the linear algebra interface (Section 4.6), in particular the
implementation of sparsity patterns. Early contributions to PyOP2 have
been made by Graham Markall [2013]. The CUDA and OpenCL backends
(Section 4.4.2) were mostly implemented by Lawrence Mitchell and Nico-
las Loriant, who are also the main contributors to the PyOP2 MPI support
(Section 4.7) and the parallel execution plan (Section 4.5) respectively. The
COFFEE AST optimiser (Section 4.2.2) was contributed by Fabio Luporini.

I am a key contributor to Firedrake’s design and architecture and im-
plemented the interface to FFC, the support for splitting forms and as-
sembling mixed systems (Section 5.2), the expression splitter (Section 5.3)
and parts of the form assembly (Section 5.4). Major contributions to Fire-
drake have been made by Lawrence Mitchell, including the solver in-
terface (Section 5.6). The expression assembler (Section 5.3), assembly
caching and Dirichlet boundary conditions (Section 5.5) have been mainly
implemented by David Ham and the mesh interface to PETSc DMPlex by
Michael Lange. Support for extruded meshes and tensor product elements
was contributed by Gheorghe-Teodor Bercea and Andrew McRae.

1.4 Dissemination

The work presented in this thesis is based on software released under
open source licenses, and the design of this software and results have
been disseminated in the scientific community through publications.

PyOP2 is published in the following conference papers:
Rathgeber et al. [2012] “PyOP2: A High-Level Framework for Performance-

Portable Simulations on Unstructured Meshes” introduces preliminary
work in progress on PyOP2 and the integration with the Fluidity CFD

3

code base. A performance comparison of an advection-diffusion problem
implemented in Fluidity, DOLFIN and the PyOP2 sequential and CUDA
backends is presented.

Markall et al. [2013] “Performance-Portable Finite Element Assembly
Using PyOP2 and FEniCS”, mainly authored by Graham Markall and me,
contains updated performance results for advection-diffusion, comparing
Fluidity, DOLFIN and the PyOP2 OpenMP, MPI and CUDA backends.

Both publications predate Firedrake and contain code samples that use
parts of the PyOP2 public API that have since been revised.

I have presented PyOP2 and Firedrake at the following conferences
and workshops: i) Facing the Multicore-Challenge III, Stuttgart, Ger-
many, September 2012; ii) Second International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC), Salt Lake City, Utah, November 2012; iii) FEn-
iCS’13 Workshop, Cambridge, UK, March 2013; iv) SciPy 2013 Confer-
ence, Austin, Texas, June 2013; v) 17th Workshop on Compilers for Par-
allel Computing, Lyon, France, July 2013; vi) FEniCS’14 Workshop, Paris,
France, June 2014; vii) PDESoft 2014 Workshop, Heidelberg, Germany,
July 2014; viii) EuroSciPy 2014 Conference, Cambridge, UK, August 2014.

The PyOP21 and Firedrake2 code repositories are hosted on GitHub,
which is also used for issue tracking and code review via pull requests.

1.5 Thesis Outline

Chapter 2 introduces the finite element method, the diverse range of con-
temporary hardware architectures and programming paradigms used in
high performance and scientific computing. In Chapter 3, an overview of
related work on high-level abstractions for computational science is given.

Chapters 4 and 5 form the main contribution of this thesis and describe
the design and implementation of the PyOP2 domain-specific language
for parallel computations on unstructured meshes and the portable finite
element framework Firedrake respectively.

An evaluation of the tool chain for a range of different finite element ap-
plications is presented in Chapter 6. The thesis concludes with a summary
and discussion of the work presented as well as an outlook on planned
and potential future work in Chapter 7.

1PyOP2 repository: https://github.com/OP2/PyOP2
2Firedrake repository: https://github.com/firedrakeproject/firedrake

4

https://github.com/OP2/PyOP2
https://github.com/firedrakeproject/firedrake

Chapter 2

Background

This chapter begins with a brief overview of the mathematical theory
of the finite element method, followed by an exposition of performance
terminology and guidelines, which are used to characterise the different
constraints and capabilities of a diverse range of hardware architectures
prevalent in high performance and scientific computing. Efficiently using
these architectures requires different parallel programming paradigms,
which are introduced in the last part of this chapter. Together, these are the
foundations built upon in later chapters of this thesis, where the efficient
mapping of the finite element method onto different hardware platforms
is presented. Related work is discussed in Chapter 3.

2.1 The Finite Element Method

Finite element methods are widely used in science and engineering as a
powerful and flexible mechanism for computing approximate solutions
of partial differential equations. The finite element method provides a
clean mathematical abstraction of a problem that we can reason about and
which we can readily express in code. It is particularly suited as a com-
putational method due to the mostly local nature of its operations, which
is a very desirable property as will be demonstrated in later chapters.

This section is a brief introduction to the mathematical theory, mainly
focussing on the representation of variational forms. Parts of this sec-
tion are based on Kirby and Logg [2012a], Kirby et al. [2012], Logg et al.
[2012b], Ølgaard and Wells [2012], Kirby and Logg [2012b] and adopt the

5

notation used therein. For a more comprehensive treatment, the reader is
referred to mathematical textbooks such as Brenner and Scott [2008].

2.1.1 Variational Problems

Consider a general linear variational problem in the canonical form: Find
u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂, (2.1)

where V̂ is the test space and V is the trial space. The variational problem
may be expressed in terms of a bilinear form a and linear form L:

a : V̂ ×V → R,

L : V̂ → R.

The variational problem is discretised by restricting a to a pair of dis-
crete test and trial spaces: Find uh ∈ Vh ⊂ V such that

a(vh, uh) = L(vh) ∀vh ∈ V̂h ⊂ V̂. (2.2)

To solve this discrete variational problem (2.2), we make the ansatz

uh =
N

∑
j=1

Ujφj, (2.3)

and take vh,i = φ̂i, i = 1, 2, . . . , N, where {φ̂i}N
i=1 is a basis for the discrete

test space V̂h and {φj}N
j=1 is a basis for the discrete trial space Vh. It follows

that
N

∑
j=1

Uj a(φ̂i, φj) = L(φ̂i), i = 1, 2, . . . , N.

We thus obtain the degrees of freedom U of the finite element solution uh by
solving a linear system

AU = b, (2.4)

where

Aij = a(φ̂i, φj), i, j = 1, 2, . . . , N,

bi = L(φ̂i).
(2.5)

Here, A and b are the discrete operators corresponding to the bilinear

6

and linear forms a and L for the given bases of the test and trial spaces.
The discrete operator A is a – typically sparse – matrix of dimension N ×
N, whereas b is a dense vector of length N.

The canonical form of a non-linear variational problem is as follows: find
u ∈ V such that

F(u; v) = 0 ∀v ∈ V̂, (2.6)

where F : V × V̂ → R is a semi-linear form, known as the residual form,
with the semicolon splitting the non-linear and linear arguments u and v.
Restricting to a pair of discrete trial and test spaces yields a discretised
variational problem: find uh ∈ Vh ⊂ V such that

F(uh; vh) = 0 ∀vh ∈ V̂h ⊂ V̂. (2.7)

The finite element solution uh = ∑N
j=1 Ujφj is obtained by solving a non-

linear system of equations b(U) = 0 with b : RN → RN and

bi(U) = F(uh; φ̂i) = 0, i = 1, 2, . . . , N. (2.8)

If the semi-linear form F is differentiable in u, the Jacobian J = b′ is
given by

Jij(uh) =
∂bi(U)

∂Uj
=

∂

∂Uj
F(uh; φ̂i) = F′(uh; φ̂i)

∂uh

∂Uj
= F′(uh; φ̂i)φj

Jij(uh) ≡ F′(uh; φj, φ̂i).
(2.9)

Formally, the Jacobian J is the Gâteaux derivative dF(uh; δu, vh) in di-
rection δu:

dF(uh; δu, vh) = lim
h→0

F(uh + hδu, vh)− F(uh, vh)

h
. (2.10)

Solving the non-linear system with a Newton iteration scheme, the ma-
trix J and vector b are assembled for each iteration to obtain the linear
system

J(uk
h) δUk = b(uk

h) (2.11)

whose solution δUk is used to update the solution vector U:

Uk+1 = Uk − δUk, k = 0, 1, (2.12)

7

Each iteration can be expressed as a linear variational problem in the
canonical form 2.1 since for each fixed uh, a = F′(uh; ·, ·) is a bilinear form
and L = F(uh; ·) is a linear form: find δu ∈ Vh,0 such that

F′(uh; δu, vh) = F(uh; vh) ∀vh ∈ V̂h, (2.13)

where Vh,0 = {vh − wh : vh, wh ∈ Vh}. Discretising this form yields the
linear system (2.11).

2.1.2 Function Spaces

The term finite element method stems from the idea of partitioning the do-
main of interest Ω of spatial dimension d into a finite set of disjoint cells
T = {K}, K ⊂ Rd, typically of polygonal shape, forming a mesh such that

∪K∈T K = Ω.

A finite element according to Ciarlet [1976] is a cell K paired with a fi-
nite dimensional local function space PK of dimension nK and a basis LK =

{`K
1 , `K

2 , . . . , `K
nK
} for P ′K, the dual space of PK.

The natural choice of basis for PK is the nodal basis {φK
i }

nK
i=1, satisfying

`K
i (φ

K
j) = δij, i, j = 1, 2, . . . , nK. (2.14)

It follows that any v ∈ PK may be expressed by

v =
nK

∑
i=1

`K
i (v)φ

K
i . (2.15)

The degrees of freedom of any function v in terms of the nodal basis
{φK

i }
nK
i=1 are obtained by evaluating the linear functionals LK, which are

therefore also known as degrees of freedom of the resulting equation system.

Defining a global function space Vh = span{φi}N
i=1 on Ω from a given set

{(K,PK,LK)}K∈T of finite elements requires a local-to-global mapping for
each cell K ∈ T

ιK : [1, . . . , nK]→ [1, . . . , N]. (2.16)

This mapping specifies how the local degrees of freedom LK = {`K
i }

nK
i=1 are

8

mapped to global degrees of freedom L = {`i}N
i=1, given by

`ιK(i)(v) = `K
i (v|K), i = 1, 2, . . . , nK, (2.17)

for any v ∈ Vh, where v|K denotes the restriction of v to the element K.

2.1.3 Mapping from the Reference Element

Finite-element global function spaces as described in Section 2.1.2 are usu-
ally defined in terms of a reference finite element {(K̂, P̂ , L̂)} with L̂ =

{ ˆ̀1, ˆ̀2, . . . , ˆ̀ n̂} and a set of invertible mappings {GK}K∈T from the refer-
ence cell K̂ to each cell of the mesh as shown in Figure 2.1:

K = GK(K̂) ∀K ∈ T . (2.18)

X

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1) x = GK(X)

K̂

K

x1

x2

x3

GK

Figure 2.1: Affine map GK from a reference cell K̂ to a cell K ∈ T [adapted from Kirby and
Logg, 2012a]

For discretisations in H1 on simplices, the mapping GK is typically affine
and can be expressed in the form GK(X) = ATX + bT for some matrix
AT ∈ Rd×d and some vector bT ∈ Rd. Otherwise the mapping is called
isoparametric and the components of GK are functions in P̂ .

2.1.4 The Lagrange Element

The P1 Lagrange element is in some sense the quintessential finite el-
ement. It defines a subspace of the Sobolev space H1, which requires

9

piecewise smooth functions on a bounded domain to be C0 continuous.
While the P1 element uses first order linear polynomial basis functions,
the Langrange element can be parametrized for polynomial basis func-
tions of any order q offering higher order approximation properties.

The Lagrange element (Pq) is defined for q = 1, 2, . . . by

T ∈ {interval, triangle, tetrahedron},

V = Pq(T),

`i(v) = v(xi), i = 1, . . . , n(q),

(2.19)

where {xi}n(q)
i=1 is an enumeration of points in T defined by

x =

i/q 0 ≤ i ≤ q, T interval,
(i/q, j/q) 0 ≤ i + j ≤ q, T triangle,
(i/q, j/q, k/q) 0 ≤ i + j + k ≤ q, T tetrahedron.

(2.20)

The number of local degrees of freedom of a Lagrange element corre-
sponds to the dimension of the complete polynomials of degree q on T:

n(q) =

q + 1, T interval,
1
2 (q + 1)(q + 2), T triangle,
1
6 (q + 1)(q + 2)(q + 3), T tetrahedron.

(2.21)

Note that the uniform distribution of points {xi} presented above is
only one common choice. Different choices are possible as long as bound-
ary points on the exterior of the cell are chosen symmetrically such that
those of adjacent cells match to allow C0 assembly.

Lagrange elements with vector- or tensor-valued basis functions are
commonly constructed from a Lagrange element for each component.

2.1.5 The Discontinuous Lagrange Element

Discontinuous Galerkin (DG) finite elements are a typical example of a
class of finite element spaces which lie in L2, however the elements are not
C0 continuous. Such spaces occur e.g. in mixed formulations of the Pois-
son equation and non-conforming methods, where the desired continuity
is imposed weakly. In the case of the DG method, the non-uniqueness

10

of the solution is modelled by a numerical flux, which is assembled over
element facets as interior facet integrals in the weak form.

Weaker coupling between individual elements imposes fewer restric-
tions on the local basis, allowing different polynomial orders for neigh-
bouring elements. Since all operations are local, discontinuous methods
are very amenable to parallelisation and hp-adaptivity, where both the
characteristic mesh size and the polynomial order of basis functions are
varied to achieve a given error tolerance for the least computational cost.

The discontinuous Lagrange element (DGq) is defined for q = 0, 1, 2, . . .
as given by (2.19), with points in T enumerated by (2.20) and a dimension
as specified in (2.21).

2.1.6 H(div) and H(curl) Finite Elements

Spaces occurring in connection with mixed formulations of second-order
elliptic problems, porous media flow and elasticity equations often do not
fulfil the continuity requirements of [H1]d for d-vector fields with d > 2.
They do however fall into the Sobolev space H(div), consisting of vector
fields for which the components and the weak divergence are square-
integrable. H(div)-conforming finite element families must have contin-
uous normal components, but each tangential component need not be
continuous. Degrees of freedom of H(div)-conforming elements usually
include normal components on element facets to ensure such continuity.
The two most widespread families of H(div)-conforming elements are the
Raviart–Thomas [Raviart and Thomas, 1977] and Brezzi–Douglas–Marini
[Brezzi et al., 1985] elements.

The Sobolev space H(curl) arises frequently in problems associated
with electromagnetism. H(curl)-conformity requires the tangential com-
ponent of a piecewise polynomial to be continuous. Therefore, the degrees
of freedom for H(curl)-conforming finite elements typically include tan-
gential components. Four families of finite element spaces due to Nédélec
are widely used and colloquially referred to as edge elements.

Nédélec [1980] introduced two families of finite element spaces on tetra-
hedra, cubes and prisms: one H(div)-conforming family and one H(curl)-
conforming family. These families are known as Nédélec H(div) elements
of the first kind and Nédélec H(curl) elements of the first kind, respectively.

11

The H(div) elements can be viewed as the three-dimensional extension of
the Raviart–Thomas elements.

Nédélec [1986] introduced two more families of finite element spaces:
again, one H(div)-conforming family and one H(curl)-conforming family.
These families are known as Nédélec H(div) elements of the second kind
and Nédélec H(curl) elements of the second kind, respectively. The H(div)
elements can be viewed as the three-dimensional extension of the Brezzi–
Douglas–Marini elements.

A comprehensive overview of these and other common and unusual
finite elements is given in Kirby et al. [2012].

2.1.7 Assembly

The discrete operator A from (2.5) is usually computed by iterating over
the cells of the mesh and adding the contribution from each local cell to
the global matrix A, an algorithm known as assembly. If the bilinear form
a is expressed as an integral over the domain Ω, we can decompose a into
a sum of element bilinear forms aK,

a = ∑
K∈T

aK, (2.22)

and thus represent the global matrix A as a sum of element matrices,

A = ∑
K∈T

AK
i , (2.23)

with i ∈ IK the index set on the local element matrix

IK =
2

∏
j=1

[1, . . . , nj] = {(1, 1), (1, 2), . . . , (n1, n2)}. (2.24)

These element or cell matrices AK are obtained from the discretisation of
the element bilinear forms aK on a local cell K of the mesh T = {K}

AK
i = aK(φ

K,1
i1

, φK,2
i2

), (2.25)

where {φK,j
i }

nj
i=1 is the local finite element basis for the discrete function

space V j
h on K. V1

h is referred to as V̂h and V2
h as Vh in Section 2.1.1. The

12

cell matrix AK is a – typically dense – matrix of dimension n1 × n2.

Let ι
j
K : [1, nj] → [1, Nj] denote the local-to-global mapping introduced

in (2.17) for each discrete function space V j
h, j = 1, 2, and define for each

K ∈ T the collective local-to-global mapping ιK : IK → I by

ιK(i) = (ι1K(i1), ι2K(i2)) ∀i ∈ IK. (2.26)

That is, ιK maps a tuple of local degrees of freedom to a tuple of global
degrees of freedom. Furthermore, let Ti ⊂ T denote the subset of the
mesh on which φ1

i1 and φ2
i2 are both non-zero. We note that ιK is invert-

ible if K ∈ Ti. We may now compute the matrix A by summing local
contributions from the cells of the mesh:

Ai = ∑
K∈T

aK(φ
1
i1 , φ2

i2) = ∑
K∈Ti

aK(φ
1
i1 , φ2

i2)

= ∑
K∈Ti

aK(φ
K,1
(ι1K)

−1(i1)
, φK,2

(ι2K)
−1(i2)

) = ∑
K∈Ti

AK
ι−1
K (i).

(2.27)

This computation may be carried out efficiently by a single iteration
over all cells K ∈ T . On each cell, the element matrix AK is computed and
then added to the global matrix A as outlined in Listing 1.

Listing 1 Assembly of local element matrices AK into a global matrix A
A = 0
for K ∈ T

(1) Compute local-to-global mapping ιK
(2) Compute element matrix AK

(3) Add AK to A according to ιK:
for i ∈ IK

AιK(i)
+
= AK

i
end for

end for

2.1.8 Quadrature Representation

A standard approach for evaluating the element matrix AK on the cell K of
spatial dimension d [see Logg, 2007, Chapter 5.1] is known as quadrature. It

13

refers to a summation of the basis functions and their derivatives as given
by the variational form evaluated at a set of quadrature points and multi-
plied with suitable quadrature weights. Runtime execution of quadrature
evaluation can be accelerated by using an affine mapping GK : K̂ → K with
pre-tabulated basis functions and derivatives at the quadrature points of
the reference cell K̂ as described in Section 2.1.3.

The element matrix AK for Poisson’s equation on cell K is computed as

AK =
∫
K

∇φK
i · ∇φK

i dx

≈
Nq

∑
k=1

wk∇φK
i (xk) · ∇φK

i (xk)|detG ′K(xk)|,
(2.28)

with quadrature points {xk}Nq
k=1 ∈ K and corresponding quadrature weights

{wk}
Nq
k=1 scaled such that ∑

Nq
k=1 wk = |K̂|. For polynomial basis functions,

the quadrature points can be chosen such that the approximation (2.28) is
exact if GK is affine. Note that test and trial function are chosen from the
same function space Vh.

The local basis functions {φK
i }

nK
i=1 on K can be generated from the basis

{Φi}n0
i=1 on the reference cell K̂ as φK

i = Φi ◦ G−1
K and the coordinates are

given as xk = GK(Xk). Hence the evaluation of the gradients of the basis
functions is a matrix-vector product

∇xφK
i (xk) = (G ′K)−T(xk)∇XΦi(Xk) (2.29)

for each quadrature point xk and each basis function φK
i .

Each gradient is computed in Nq · n0 · d2 multiply-add pairs and the total
cost for the element matrix computation amounts to Nq · n0 · d2 + Nq · n2

0 ·
(d + 2) ∼ Nq · n2

0 · d multiply-add pairs, ignoring the cost of computing
the mapping GK, its determinant, and the inverse of its Jacobian G ′K. Note
that this cost can be significantly reduced by applying optimizations such
as loop invariant code motion, common subexpression elimination, and
precomputation of constants as detailed in Ølgaard and Wells [2010].

14

2.1.9 Tensor Representation

According to Kirby and Logg [2006, 2007], Logg [2007], the evaluation of
the element matrix AK can in many cases be accelerated by precomputing
a constant reference tensor A0 on the reference element and contracting with
a geometry tensor GK depending on the geometry of the current cell K.

We only consider the case where GK : K̂ → K is an affine mapping and
take the element matrix AK for Poisson’s equation as an example. Having

AK =
∫
K

∇φK
i · ∇φK

i dx =
∫
K

d

∑
β=1
∇

∂φK
i

∂xβ
∇

∂φK
i

∂xβ
dx (2.30)

with spatial dimension d and local basis functions {φK
i }

nK
i=1, yields, with a

change of variables to the basis {Φi}n0
i=1 on the reference cell K̂:

AK =
∫
K̂

d

∑
β=1

d

∑
α1=1

∂Xα1

∂xβ

∂Φi

∂Xα1

×
d

∑
α2=1

∂Xα2

∂xβ

∂Φi

∂Xα2

|detG ′K|dX. (2.31)

Due to the affine mapping GK, detG ′K and the derivatives ∂X
∂x are constant:

AK = |detG ′K|
d

∑
α1=1

d

∑
α2=1

d

∑
β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

∫
K̂

∂Φi

∂Xα1

∂Φi

∂Xα2

dX

=
d

∑
α1=1

d

∑
α2=1

A0
iα

Gα
K,

(2.32)

with
A0

iα
=
∫
K̂

∂Φi

∂Xα1

∂Φi

∂Xα2

dX (2.33)

and

Gα
K = |detG ′K|

d

∑
β=1

∂Xα1

∂xβ

∂Xα2

∂xβ
. (2.34)

The element matrix can hence be decomposed as

AK = A0 : GK, (2.35)

with : the Frobenius product of tensors. A0 is the constant reference tensor
that does not depend on the cell K and may be precomputed before the

15

assembly of A, and GK the geometry tensor that needs to be computed for
each cell K.

Tabulating AK involves d3 multiply-add pairs for computing the rank
two geometry tensor GK and n2

0d2 multiply-add pairs for the tensor con-
traction. The total computational cost can therefore be estimated as d3 +

n2
0d2 ∼ n2

0d2 and compared to the cost Nqn2
0d for quadrature. This results

in a speedup of roughly Nq/d, which may be significant particularly for
higher order elements that require a large number of quadrature points.

2.1.10 Linear Solvers

The linear system (2.4) arising from a variational problem of the form (2.1)
contains a generally sparse matrix A to be solved for the vector of un-
knowns U. This kind of linear system also appears in each iteration of a
non-linear scheme such as Newton’s method in (2.11).

Efficient solvers include the family of Krylov-type iteration methods, such
as the conjugate gradient (CG) iteration for symmetric positive-definite ma-
trices [Hestenes and Stiefel, 1952], and the generalized minimal residual
method (GMRES) [Saad and Schultz, 1986], which only require matrix-
vector products, but not the matrix A in explicit form. Relaxation methods
have been greatly superseded by multi-grid methods [Brandt, 1977], acting
on a hierarchy of grids and solving in near linear time. Direct methods
compute an LU factorisation using Gaussian elimination [Davis, 2004].

Solvers often have to deal with ill-conditioned matrices and hence the
use of preconditioners can significantly improve convergence, especially for
Krylov methods, whose convergence rate is directly related to the condition
number of the matrix. A (left-sided) preconditioner transforms the linear
system (2.4) into

P−1AU = P−1b, (2.36)

where P−1 is chosen to be a good approximation of A−1, but at the same
time cheap to compute. The inverse A−1 is the perfect preconditioner,
resulting in a condition number of 1 for the preconditioned system, but
requires having already solved the problem.

Common choices for preconditioners given in Kirby and Logg [2012a]
are classical relaxation methods, such as Gauss-Seidel, or incomplete factoriza-
tions, such as ILU (incomplete LU factorization). Multi-grid methods can

16

also serve as a powerful preconditioner. For certain problem classes, there
exist more advanced physically-based preconditioners, which take into ac-
count properties of the differential equations being solved.

2.1.11 Action of a Finite Element Operator

Krylov methods do not require the matrix A to be explicitly available,
only the matrix-vector product AU, which can be treated as a “black box” in
many implementations. Thus, they qualify for use with so-called matrix-
free methods and allow problems to be solved without ever explicitly com-
puting or storing the matrix A. This section gives a brief overview of what
is presented in Kirby et al. [2004].

Assembly of the sparse matrix A is replaced by repeated assembly of a
vector v = AU, the action of the operator A on the given vector U ∈ RN :

(AU)i =
N

∑
j=1

AijUj =
N

∑
j=1

a(φ1
i , φ2

j)Uj = a(φ1
i ,

N

∑
j=1

Ujφ
2
j) = a(φ1

i , uh). (2.37)

That is, the application of the matrix A on the coefficient vector U is
given by the action A of the bilinear form evaluated at the finite element
approximation uh = ∑N

j=1 Ujφ
2
j :

(AU)i = A(a, uh)(φ
1
i). (2.38)

Initially, all entries of v are set to zero and are then accumulated by
looping over all elements K ∈ T with T the decomposition of the domain
into elements, and computing

vιK(i)
+
=
|ιK |

∑
j=1

AK
i,juh,ιK(j) i = 1, . . . , |ιK|. (2.39)

This can be written as a matrix-vector product for each element K

vιK
+
= AKuh,ιK (2.40)

where ιK denotes the set of global indices obtained from the local-to-global
mapping and AK is the local element tensor of element K in the quadrature
or tensor product representation as described in Sections 2.1.8 and 2.1.9.

17

The computational cost of (2.40) for Poisson’s equation is d2|ιK|2 multiply-
add pairs per element, with d the spatial dimension. An additional 3|ιK|+
d(d + 1)/2 memory reads and writes are required, if the symmetry of GK

is exploited, not counting storing AK. Note that due to the accumulation
v needs to be both read from and written to memory.

The matrix-free approach has the disadvantage that preconditioners
commonly used with Krylov methods usually involve manipulations of
A and hence cannot be readily applied in this case. However, precondi-
tioners can be adapted for the matrix-free approach if supported by the
Krylov solver.

2.2 Contemporary Parallel Hardware Architectures

The last decade has seen processor clock frequencies plateau and the num-
ber of cores per chip increase dramatically. GPUs programmable for gen-
eral purpose computations (GPGPU) have entered and established them-
selves in the high performance computing market. Unconventional hard-
ware architectures such as the Cell Broadband Engine Architecture and
the Intel Xeon Phi have been developed with the intent of finding a sweet
spot in terms of power consumption and achievable peak performance.

Solving grand challenge problems at reasonable performance requires
taking into account and tuning for characteristics of the hardware. Fu-
ture proof software design requires abstracted systems, insensitive to the
rapidly changing hardware landscape, which is more complex and diverse
than it has ever been. This section gives an overview of contemporary
multi- and many-core hardware architectures.

2.2.1 Multi-core and Many-core Architectures

Contemporary architectures are commonly classified according to num-
ber and complexity of the cores as either multi- or many-core, though the
distinction is not very clear cut and there has been a recent trend of con-
vergence. Caches and complex logic take up most transistors and space on
a multi-core chip, whereas the arithmetic logic units (ALUs) responsible
for integer and floating point computations occupy a rather small por-
tion. Most of the area of a many-core chip is devoted to execution units

18

rather than caches. In the following, characteristics of both architectures
are compared and significant differences highlighted.

Multi-core architectures

Few, complex cores Multi-core CPUs contain a small number, typically
two to eight, of complex cores designed to deliver results for general pur-
pose, serial workloads with minimum latency.

Large, hardware managed caches CPUs have a typically deep hierarchy of
on-chip caches (L1, L2, L3) which are automatically managed by the hard-
ware and are most efficiently used by computations with good spatial and
temporal locality. Caches may be shared and cache coherency protocols com-
monly ensure consistency between caches visible by different CPU cores.

Instruction Level Parallelism Complex logic such as prefetching, branch pre-
diction and out-of-order execution is used to process instructions in an order
that avoids stalls due to main memory accesses and further aids in min-
imising latency, provided there are enough instruction in the pipeline.

SIMD Modern CPUs achieve their peak arithmetic performance only when
using floating point vector registers via single instruction multiple data
(SIMD) intrinsics on operands of up to 256-bit length.

Many-core architectures

Many, simple cores Many-core devices have many throughput-optimised,
simple cores capable of running hundreds or thousands of concurrent
threads. The comparatively small caches can be partly managed by the
programmer to collaboratively load data shared between threads.

Limited, shared resources On-chip resources such as registers and caches
are commonly shared between a number of resident threads such that
there is a trade-off between the number of concurrently executed threads
and the amount of resources used by each.

Latency hiding For highly parallel applications, latency incurred by mem-
ory accesses is hidden through zero overhead context switches between a
large number of concurrent threads in-flight at the same time.

Offloading Many-core devices are often designed as accelerators with ded-
icated memory, connected via PCIe and controlled from a CPU host pro-

19

cess offloading computations by launching kernels on the device.

2.2.2 Contemporary GPU Architectures

Kepler [NVIDIA, 2012] is the most recent generation of NVIDIA GPU ar-
chitectures, integrating up to 15 streaming multiprocessors (SMX) on a
single chip, each with 192 single-precision and 64 double precision float-
ing point units capable of one fused multiply-add (FMA) per cycle, 32
Special Function Units (SFUs) and 32 Load/Store units (LD/ST). An SMX
has access to a register file with 65,536 32-bit registers, 48kB of read-only
data cache and 64kb of on-chip memory that is split between a hardware-
managed L1 cache and a software-managed shared memory. All SMX
units share a common L2 cache and up to 12GB of global DRAM.

Parallel computations are launched as kernels by the controlling CPU
process on a given number of threads, batched in groups of 32 called warps
and organised in a grid of thread blocks. NVIDIA GPUs use the single-
instruction multiple-thread (SIMT) execution model, where all threads of a
warp execute the same instruction. That means a warp must execute each
branch of any conditional where at least one of its threads participates. If
all threads take the same branch, only that particular branch is executed.
Otherwise, the warp is called divergent and each relevant branch is ex-
ecuted in sequence with all threads not participating masked out, which
means no results are written, operands read or addresses evaluated.

Blocks of threads are executed independently of each other and each
block has a fixed affinity to an SMX for its lifetime. Warps of a given block
have access to the shared memory of that SMX, which is explicitly managed
by the programmer. It can be used to collaboratively load data from global
memory, which can then be accessed with almost the same low latency as
the register file. Threads within a block can also synchronise on a barrier.
Apart from kernel launches, there are no global barriers and no way of
communicating and synchronisation between threads of different blocks,
since these need to be able to execute independently.

Access to global memory is cached in L2 in 128 byte cache lines aligned
to memory addressed that are multiples of 128. Memory accesses to L2
are served in 128 byte transactions, where transactions targeting global
memory are 32, 64 or 128 bytes depending on the size of the word accessed

20

by each thread in a warp and the access pattern. In the worst case this
can mean a 32-byte transaction for a single byte read or written. In the
best case, that is when threads read consecutive words from memory, also
known as coalesced access, this means a four byte word per thread per
transaction is transferred.

In contrast, global memory transactions on the older Tesla architecture,
which does not have an L2 cache, are scheduled per half-warp. To achieve
coalesced access, the 16 threads of a half-warp must read 16 consecutive
words of four, eight or 16 bytes, which must all lie within the same 64-,
128- or 256-byte aligned segment. If this requirement is not met, 16 sepa-
rate 32-byte transactions are issued.

2.2.3 Intel Xeon Phi (Knights Corner)

The Intel Xeon Phi coprocessor [Reinders, 2012] code named “Knights
Corner” is an x86 SMP-on-a-chip running Linux that connects to the host
system via the PCIe bus, much like a GPU. Its 61 in-order dual issue 64-
bit processor cores support four concurrent hardware threads and have
access to 512 bit wide SIMD registers and 512KB of local L2 cache. Caches
are coherent across the entire coprocessor. The cores are interconnected by
a bidirectional ring bus which also connects the eight memory controllers
in four groups of two each.

Despite being a coprocessor, the Xeon Phi can be programmed using
MPI, OpenMP or OpenCL much like a CPU due to its x86 architecture.

2.2.4 Performance Terminology

Common terminology used to characterise the performance of hardware
platforms and algorithms is introduced in the list below.

Performance bottlenecks Any optimisation effort should be preceded by
profiling to determine the bottleneck of the problem under consideration.
The three common bottlenecks are floating point operations, memory band-
width and memory access latency.

Machine Balance (MB) The machine balance of an architecture is commonly
defined as the ratio of peak floating point operations per cycle to peak
memory operations per cycle for single or double precision floating point
operands [McCalpin, 1995]. In other words it is the number of floating

21

point operations needed per memory word read or written to be able to
saturate the compute units of the machine.

Algorithmic Balance (AB) Similar to the machine balance, the algorithmic
balance is the ratio of floating point operations to memory operations of
an algorithm, that is the number of floating point operations performed
per word of memory read or written.

Compute limited An application is said to be compute limited if it is bound
by the available floating point operation throughput of the architecture.
An algorithmic balance greater than the machine balance may indicate
compute boundedness.

Bandwidth limited An application that saturates the device’s memory band-
width is said to be bandwidth limited. This is the common case and indi-
cated by a machine balance higher than the algorithmic balance.

Latency limited An application is latency limited if it is unable to hide
memory access latency with computation. This may be caused by an in-
sufficient degree of parallelism for the chosen architecture, poor cache
performance or unsuitable memory access patterns.

2.2.5 Performance Considerations

As outlined in the previous sections and shown in Table 2.1, different
contemporary hardware platforms differ quite significantly in their char-
acteristic specifications such as floating point performance, memory band-
width, cache size and hierarchy and memory access latency. As a conse-
quence they are more or less well suited for certain kinds of algorithms
and applications and require different approaches, paradigms and algo-
rithmic considerations when programming them. Some overarching ob-
servations and considerations are outlined in this section.

Considerations for multi-core CPUs

• CPUs require a moderate amount of fairly coarse-grained data or task
level parallelism with at least one thread per physical core. For simul-
taneous multithreading (SMP) architectures it can be, but not always is,
beneficial to launch more threads, e.g. a thread per virtual core.

22

Architecture Cores Ops/cycle Clock
MHz

GFlop/s BW
GB/s

MB

NVIDIA Kepler K40 (SP) 2880 2 (FMA) 745 4291.2 288 60
NVIDIA Kepler K40 (DP) 960 2 (FMA) 745 1430.4 288 40
AMD Hawaii XT (SP) 2816 2 (FMA) 1000 5632 320 70
AMD Hawaii XT (DP) 352 2 (FMA) 1000 704 320 18
Intel Xeon Phi (SP) 61 16 (AVX) 1238 2416 352 14
Intel Xeon Phi (DP) 61 8 (AVX) 1238 1208 352 14
Intel Xeon E3-1285 (SP) 4 32 (AVX2, FMA) 3600 460.8 25.6 72
Intel Xeon E3-1285 (DP) 4 16 (AVX2, FMA) 3600 230.4 25.6 72

Table 2.1: Characteristic specifications of contemporary hardware architectures: number
of processor cores, arithmetic throughput per cycle per core, processor clock
frequency, peak arithmetic throughput, peak memory throughput and machine
balance (MB) for single (SP) and double precision (DP). Note the performance
penalty for using DP of factor 3 and 8 for the NVIDIA and AMD GPU architec-
tures, which also translates to a lower machine balance. For the Intel architec-
tures it is the same since the peak performance for DP is half that of SP but also
only half the number of DP words are transferred over the memory bus.

• Large caches allow comparatively large per-thread local working set
sizes (in the order of MBs).

• Saturating the multiple ALUs per core requires a sufficient degree of
instruction-level parallelism (ILP) in the workload of each thread.

• Achieving peak floating point performance is only possible when mak-
ing full use of the SIMD vector registers and ALUs. Optimising a com-
pute bound code for vectorisation by a vectorising compiler or using
SIMD intrinsics is therefore crucial.

• Memory bound applications may be able to saturate the comparatively
low memory bandwidth already using a subset of the cores.

• Caches are automatically managed and often local to a core. Memory
accesses need to be optimised for the cache hierarchy, where cache us-
age is optimal if all data on a given cache line is used by a given thread
(spatial locality) before the cache line is evicted and it is not necessary to
load the same data again at a later time (temporal locality).

• Data accessed by a given thread should be stored contiguously in mem-
ory, a layout often called array-of-structures (AoS).

• On multi-socket nodes it is crucial to account for non-unified memory
access (NUMA), to ensure that memory is allocated local to the socket
from where it is accessed and pin threads to CPU cores.

23

Considerations for many-core accelerators

• GPUs and other many-core platforms require a high degree of fine-
grained parallelism, often thousands of threads, to saturate the compute
resources and to hide memory access latency.

• On chip local memory and registers are a shared and scarce resource,
which requires per-thread local working set sizes to be kept small to
allow for a large number of resident threads and high device occupancy.
If space runs out, registers may spill to slow global device memory.

• Caches are shared by all threads resident on a given multiprocessor
(compute unit) and a cache line is read/written simultaneously by all
threads on a warp (wavefront) with each thread accessing a single four
or eight byte word.

• Data accessed by a given warp (wavefront) should be stored interleaved
in memory to enable coalesced access, where threads with consecutive
IDs access consecutive words, a layout called structure-of-arrays (SoA).

• Manually managed shared memory allows threads in a warp (wave-
front) to collaboratively stage data that is not suitably laid out in global
memory for faster on-chip access.

• Divergent code paths should be kept to a minimum due to the lock-step
instruction execution of an entire warp (wavefront) of threads.

• The speed of data transfers across the PCIe bus from host to device
is only a fraction of the on-device memory bandwidth and therefore
these transfers need to be kept to a minimum. It can be beneficial to
(re)compute data on the device and save the transfer cost even though
the same computation could be performed more efficiently on the host.

2.3 Programming Paradigms for Many-core Platforms

GPUs and other accelerators have a reputation of being difficult to pro-
gram and often require very different data structures and algorithms to
achieve good performance. This presents a barrier to adoption, which is
best overcome by raising the level of abstraction as described in Chapter
4. In this section, the CUDA and OpenCL programming models for accel-
erators and PGAS languages for parallel computations are introduced.

24

Listing 2.1: A saxpy kernel in C

void saxpy(int n, float *c, float *a, float *b, float alpha) {
for (int i=0; i<n; ++i)

c[i] = a[i] + alpha * b[i];
}
// Call for vectors of length 10000
saxpy (10000 , c, a, b, alpha);

Listing 2.2: A saxpy kernel in CUDA

__global__ void saxpy(int n, float *c, float *a, float *b,
float alpha) {

if (threadIdx.x < n)
c[threadIdx.x] = a[threadIdx.x] + alpha * b[threadIdx.x];

}
// Launch 1 thread block with 10000 threads
saxpy <<<1, 10000>>>(10000, c, a, b, alpha);

2.3.1 NVIDIA Compute Unified Device Architecture (CUDA)

NVIDIA describes its Compute Unified Device Architecture (CUDA) [NVIDIA,
2013] as “a general purpose parallel computing platform and program-
ming model”. The term CUDA is often used to refer to CUDA C, an ex-
tension to the C programming language, allowing programmers to lever-
age NVIDIA GPUs for general-purpose computations. CUDA C adds
keywords to annotate functions as kernels and a notation to specify the
launch configuration to invoke a kernel with, that is the number and size
of thread blocks. Blocks can be declared as logically 1D, 2D or 3D and
arranged in a grid that can itself be 1D or 2D.

Inside the kernel function, a thread has access to this launch configu-
ration via special keywords to query its thread ID within the block, the
block’s ID within the grid, as well as the block and grid dimensions.

As an illustrative example we consider a saxpy kernel performing the
computation~c = α~a+~b, which frequently occurs in numerical algorithms.
It computes the sum of two vector operands of which the first is multiplied
by a scalar and stores the result in a third vector. Listing 2.1 shows the
C implementation. The CUDA implementation is shown in Listing 2.2,
where the keyword __global__ annotates the function as a kernel. Most
noticeably, there is no for loop in the CUDA kernel, since the kernel is
launched in parallel for n threads, each computing a single result given by

25

their thread ID. It would even be possible to omit passing in the vector
length n to the kernel and have it only be implicitly given by the launch
configuration.

The thread indexing used in Listing 2.2 assumes the thread block shape
is 1D and there is only a single thread block launched. To allow launch-
ing an arbitrary number of 1D blocks would require the current index to
be computed as blockIdx.x * blockDim.x + threadIdx.x. Both grid and block
shapes can be multi-dimensional, in which case the additional index di-
mension for the grid is accessed as blockIdx.y and those for the block as
threadIdx.y and threadIdx.z respectively.

2.3.2 Open Computing Language (OpenCL)

OpenCL [Stone et al., 2010] is an industry standard for task-parallel and
data-parallel heterogeneous computing managed by the Khronos Group
[Khronos, 2013] and defines an API with a set of core functionality sup-
ported across all different types of devices and optional vendor exten-
sions. An OpenCL application is guaranteed to be portable across all sup-
ported devices by different vendors implementing the OpenCL runtime
and drivers. Portability only guarantees correctness, not performance,
and it is unlikely that an application tuned for a particular architecture
will achieve satisfactory performance on a different device.

In the OpenCL platform model a host controls one or several computa-
tional devices which contain one or more compute units (CUs) composed of
one or more processing elements (PEs) executing computations in a SIMD
fashion. Within a CU, instructions execute in lock-step. The control flow
is called converged if all PEs run the same instruction stream and diverged
otherwise.

Computation is done inside a kernel within a context bound to a device
and managed by the host through a command queue, where work occurs
through work items organised into work groups. The environment defined
by a context includes devices, kernel objects, program objects and memory
objects. Kernels are normally passed to the OpenCL runtime as strings
and just-it-time (JIT) compiled for the target device at runtime. This allows
taking advantage of specific hardware and software features of the target
device without having to recompile the application itself.

26

Listing 2.3: A saxpy kernel in OpenCL

__kernel void saxpy(cl_int n,
__global float *c, __global float *a,
__global float *b, float alpha) {

int idx = get_global_id (0);
if (idx < n)

c[idx] = a[idx] + alpha * b[idx];
}

OpenCL distinguishes four memory regions: global memory is visible to
all devices in a given context and contains a read-only region of constant
memory, whereas local memory is local to a work group and private memory
private to a work item. These address spaces are logically disjoint, but
may share the same physical memory depending on the implementation
for a given platform.

CUDA OpenCL
shared memory local memory
local memory private memory
thread work item
thread block work group
streaming multiprocessor (SMX) compute unit (CU)
stream processor (SP) processing element (PE)

Table 2.2: Concepts and terminology in CUDA and OpenCL

Many concepts and terms in CUDA have a one-to-one equivalence in
OpenCL as shown in Table 2.2. An OpenCL version of the SAXPY kernel
from Listing 2.1 is shown in Listing 2.3. The syntax for annotating a
kernel in OpenCL C is very similar to that of CUDA C. OpenCL providing
a lower level API than CUDA, the process of launching a kernel from
the host code is significantly more complex and therefore omitted from
Listing 2.3.

2.3.3 Partitioned Global Address Space (PGAS) Languages

Partitioned Global Address Space (PGAS) is a Single Program Multiple
Data (SPMD) programming model where each process or thread owns a
partition of a globally addressable memory space. PGAS languages aim to
offer shared memory programming abstractions with locality and control

27

comparable to message passing.
Popular implementations are Unified Parallel C (UPC) [Yelick et al.,

2007], an explicitly parallel extension of ISO C, Co-Array Fortran (CAF),
a Fortran 95 language extension [Coarfa et al., 2005] and Titanium [Yelick
et al., 2007], a scientific computing dialect of Java. In all three cases,
source-to-source translation is used to turn a PGAS programme into ISO
C (UPC/Titanium) or Fortran 90 (CAF), augmented with communication
calls into a runtime (GASnet for UPC/Titanium and ARMCI for CAF).

An important difference to message passing as implemented in MPI is
the use of one-sided communication, where a put or get message contains
a memory address and payload. Instead of having to match a message
tag with a pending receive operation at the target, the communication
runtime can directly access the remote processes’ memory, typically with
a hardware supported RDMA or shared memory operation.

2.4 Conclusions

The finite element method has been introduced as a clean mathemati-
cal abstraction for computing approximate solutions of partial differen-
tial equations, which is amenable to parallel computations due to the
mostly local nature of its operations. A range of contemporary multi- and
many-core hardware platforms have been presented, which differ vastly
in characteristic specifications such as the number of cores, the peak arith-
metic and memory throughput and the degree of concurrency required to
achieve good utilisation of the device. As outlined in the performance con-
siderations presented, obtaining good performance commonly requires
considerable low-level optimisation and tuning efforts specifically tay-
lored to each individual target architecture using one of the different
programming paradigms described. This presents a significant barrier
to portability and motivates the design of higher-level frameworks which
abstract from architecture-specific characteristics and optimisations.

The material covered in this chapter serves as a foundation for the de-
sign of PyOP2 and Firedrake described in Chapters 4 and 5 and the ex-
periments presented in Chapter 6. It also provides background relevant
to the discussion of related work in the following chapter.

28

Chapter 3

High-level Abstractions in
Computational Science

In this chapter, an overview of related work on different approaches to ab-
stracting problems in computational science with a focus on finite element
frameworks is given, ranging from traditional libraries to domain-specific
languages. Some of these have inspired the design of PyOP2 and Fire-
drake, described in Chapters 4 and 5, or are even used as components.

3.1 Library-based Approaches

Scientific software is traditionally implemented in the form of libraries in
Fortran, C or C++. In this section, a number of established frameworks
are presented, which take different approaches of abstracting the solution
of partial differential equations and the finite element method.

3.1.1 Portable, Extensible Toolkit for Scientific Computation
(PETSc)

PETSc [Balay et al., 1997] is a library and tool kit for building scientific
applications primarily focused on the scalable parallel solution of partial
differential equations and regarded by many as the de facto standard for
sparse linear algebra. PETSc is built on top of MPI for distributed parallel
computations and provides data structures and routines that can be used
at an abstract level without having to write low-level message-passing

29

code or manage what portion of the data is stored on each process. Com-
munication is automatically managed in an efficient way by overlapping
with computation and optimising repeated communication patterns while
allowing the user to aggregate data for subsequent communication and
dictate when communication can occur.

PETSc provides modules for index sets (IS) with support for permu-
tations and renumbering, vector (Vec) and matrix (Mat) operations, dis-
tributed mesh data management (DM), Krylov subspace methods (KSP) and
preconditioners (PC), including multigrid and sparse direct solvers, non-
linear solvers (SNES) and time stepping (TS) for ordinary differential equa-
tion (ODE) and differential algebraic equation (DAE) integrators. PETSc
interoperates with a number of third-party libraries such as Hypre [Fal-
gout et al., 2006], Trilinos [Heroux et al., 2005], MUMPS [Amestoy et al.,
2001] and UMFPACK [Davis, 2004].

While implemented in C for portability, PETSc follows object-oriented
design principles. Its data structures are defined by abstract interfaces and
objects are opaque handles that can represent different implementations,
which may be chosen at runtime. Application code is written against a
unified API independent of the concrete instances of data structures.

Most of PETSc’s functionality is exposed to Python via the petsc4py
[Dalcin et al., 2011] interface implemented in Cython [Behnel et al., 2011].
At very little runtime overhead, petsc4py provides access to data struc-
tures and routines through a high-level “pythonic” interface.

Unstructured Meshes (DMPlex)

0 1Cells
(rank 2)

22 3 4 5 6Edges
(rank 1)

7 8 9 10Vertices
(rank 0)

0 1

2 5

3 6

4

8

7

9

10

Figure 3.1: Hasse diagram of the partially ordered set representing an unstructured mesh

The PETSc DMPlex module [Knepley, 2013] provides a representation

30

cone(0) = {2, 3, 4}

0 1Cells
(rank 2)

22 3 4 5 6Edges
(rank 1)

7 8 9 10Vertices
(rank 0)

support(9) = {3, 4, 6}

0 1Cells
(rank 2)

22 3 4 5 6Edges
(rank 1)

7 8 9 10Vertices
(rank 0)

Figure 3.2: Cone (left) and support (right) of an entity in a DMPlex mesh

closure(0) = {0, 2, 3, 4, 7, 8, 9}

0 1Cells
(rank 2)

22 3 4 5 6Edges
(rank 1)

7 8 9 10Vertices
(rank 0)

star(7) = {7, 2, 3, 0}

0 1Cells
(rank 2)

22 3 4 5 6Edges
(rank 1)

7 8 9 10Vertices
(rank 0)

Figure 3.3: Closure (left) and star (right) of an entity in a DMPlex mesh

of a distributed unstructured mesh as a graded partially ordered set, im-
plemented as a directed acyclic graph (DAG). This DAG only stores the
mesh topology, whereas the geometry is represented as a mesh function.
The visualisation of such a mesh as a Hasse diagram is illustrated in Fig-
ure 3.1. The set of all entities of the same rank or grade is called a stratum.
Entities are numbered by stratum with the highest rank numbered first.

An entity may be any mesh element and DMPlex makes no explicit
references to element types. Operations are composed of two basic oper-
ations. The cone of an entity are the adjacent elements on the rank below
and its dual operation, the support are the adjacent elements on the rank
above, shown in Figure 3.2. The transitive closure of an entity is its cone
recursively continued across all lower ranks and its dual, the star, is the
support recursively continued across all higher ranks, given in Figure 3.3.

Meshes can be created either using primitive operations, by setting the
cone and support of each mesh element, or by reading from file in com-
mon formats such as Gmsh [Geuzaine and Remacle, 2009], CGNS [Poirier
et al., 1998] and EXODUS [Mills-Curran et al., 1988]. DMPlex can partition
and distribute an existing mesh and supports renumbering by permuting
mesh elements.

31

3.1.2 deal.ii: A General-Purpose Object-Oriented Finite Element
Library

Designed as a general-purpose toolkit for finite element applications, deal.ii
[Bangerth et al., 2007] is a C++ class library, allowing dimension indepen-
dent code by using template parameters to define the space dimension.
Abstractions are provided for meshes, with support for adaptive refine-
ment and coarsening, degrees of freedom associated with finite element
spaces, linear algebra and interfaces for grid generators and visualisation.

Given a Triangulation describing the mesh and a FiniteElement associating
degrees of freedom with vertices, faces and cells, the DoFHandler provides
a global enumeration of DOFs. Each cell of the mesh may use a different
FiniteElement, allowing hp adaptivity. A range of iterative solvers as well
as interfaces to PETSc [Balay et al., 1997], and sparse direct solvers are
provided to solve linear systems. Saddle-point problems can be efficiently
solved using block or Schur complement preconditioners. Shared memory
parallelisation is supported by the library, whereas distributed memory
parallelisation needs to be implemented by the user on top of PETSc.

3.1.3 DUNE: Distributed and Unified Numerics Environment

Figure 3.4: Modular design of DUNE [from DUNE Team, 2014]

DUNE [DUNE Team, 2014], the Distributed and Unified Numerics En-
vironment, is a modular C++ template library for solving partial differen-
tial equations (PDEs) with grid-based methods. The core module DUNE-
Grid [Bastian et al., 2008b,a] is managing the topology of an – optionally
– distributed mesh alongside adaptive refinement, coarsening and the re-
balancing of the variable work load post adaptation. Templated iterative

32

solvers are implemented in the DUNE-ISTL core module [Blatt and Bas-
tian, 2007]. Built on top of the core modules is DUNE-FEM [Dedner et al.,
2010], an implementation of grid-based discretisation schemes suitable for
finite element and finite volume methods.

Template metaprogramming is used to achieve good performance while
providing a clean and expressive interface for the programmer. Continu-
ous functions are represented by the parametrised Function<FunctionSpace>,
their discretised counterparts by the DiscreteFunction<DiscreteFunctionSpace>

class. Mappings between function spaces are derived from the base class
Operator or its specialisation LinearOperator for linear discrete operators1. A
singleton class DofManager is used to manage degrees of freedom stored on
a grid, which does not hold any data itself.

3.1.4 Fluidity

Figure 3.5: Fluidity configuration file for a backward-facing step opened with Diamond

Fluidity [Piggott et al., 2008, Applied Modelling and Computation Group
(AMCG), 2013] is a multi-phase computational fluid dynamics code using
finite element methods for numerically solving the Navier-Stokes equa-
tions on unstructured meshes. Areas of application include geophysical

1Refer to http://dune.mathematik.uni-freiburg.de/doc/dune-fem-howto-1.3.0.pdf

for an example implementation of a linear operator for the Poisson problem.

33

http://dune.mathematik.uni-freiburg.de/doc/dune-fem-howto-1.3.0.pdf

fluid dynamics, computational fluid dynamics, ocean modelling and man-
tle convection. Notable features are multi-phase flow, moving meshes
with adaptivity over space and time, support for various classes of fi-
nite elements including mixed formulations and MPI distributed mem-
ory parallelisation. The GUI configuration editor Diamond [Ham et al.,
2009] shown in Figure 3.5 allows users to configure simulation runs and
parametrise the models implemented by Fluidity in an easy-to-use man-
ner, defining user-defined prescribed fields and boundary conditions in
Python without having to write very extensive XML input files by hand.

3.1.5 Nektar++

Nektar++ [Vos et al., 2011] is a C++ template library for the tensor product
based finite element method with support for low to high p-order piece-
wise polynomial basis functions and explicit, implicit and implicit-explicit
(IMEX) time-stepping methods. Vos et al. [2010], Cantwell et al. [2011b,a],
Bolis et al. [2013] conducted extensive experimental studies investigating
the relative performance of h-, p- and h-p-refinement to obtain a specified
error tolerance for a given problem and mesh. Their findings highlight
the importance of choosing the appropriate data structures for solving the
global linear system with an iterative solver on the same CPU architecture.

Nektar++ supports assembling a global sparse matrix, a local matrix
approach and a sum-factorisation approach. Assembling a global matrix
tends to be favourable for low-order continuous basis functions, whereas
sum factorisation is most efficient for high order, in particular for quadri-
lateral and hexahedral finite elements. For much of the intermediate re-
gion and for discontinuous methods, the local matrix approach performs
best. These performance differences are expected to be even more pro-
nounced for many-core architectures not presently supported.

3.2 FEniCS

FEniCS [Logg et al., 2012a] is an open source software project founded
in 2003 with the goal of automating the efficient solution of differen-
tial equations. As outlined in Logg [2007], this involves automation of
(i) discretization, (ii) discrete solution, (iii) error control, (iv) modeling,

34

and (v) optimisation. The three major design goals for FEniCS are gener-
ality, efficiency, and simplicity. Dynamic code generation is used to combine
generality and efficiency, which are generally regarded as opposing goals.

This chapter describes the most important components of FEniCS and
how they interact to achieve the set goals. For a more comprehensive
introduction, refer to the FEniCS book by Logg et al. [2012a].

3.2.1 DOLFIN

FEniCS is built around the problem solving environment DOLFIN (Dy-
namic Object-oriented Library for FINite element computation) [Logg et al.,
2012c, Logg and Wells, 2010], a C++ class library augmented by a SWIG-
generated Python interface [Beazley, 2003]. This allows for a seamless
integration in a scripting environment, with the remaining FEniCS com-
ponents implemented in Python, and combines the performance of a C++
library with the versatility of a scripting language. In the following we
will always refer to the Python interface of DOLFIN.

DOLFIN

FIAT FErariInstant

FEniCS Apps

UFC

PETSc uBLAS UMFPACK SCOTCHNumPy VTK

UFL

Application
Applications

Interfaces

Core components

External libraries

Trilinos GMP ParMETIS CGAL MPI SLEPc

FFC

Figure 3.6: FEniCS system architecture with DOLFIN as the main user interface compo-
nent [adapted from Logg et al., 2012c]

Figure 3.6 illustrates the interaction of the various FEniCS components

35

centred around DOLFIN as the main user interface for solving differen-
tial equations, which will be discussed in the following subsections. The
user specifies their problem in form of function spaces defined by finite
elements on a mesh and variational forms using these function spaces. Vari-
ational forms are defined using the domain specific Unified Form Lan-
guage UFL (Section 3.2.2). The FFC form compiler (Section 3.2.3) trans-
lates these forms into C++ code conforming to the UFC interface specifi-
cation (Section 3.2.5), which are just-in-time compiled and made available
as a Python module by the utility Instant (Section 3.2.6).

DOLFIN interfaces to a range of established linear algebra libraries
to provide matrix and vector implementations as well as efficient linear
solvers. At the time of writing, PETSc [Balay et al., 1997], Trilinos/Epetra
[Heroux et al., 2005], and uBLAS [Walter and Koch, 2014] were supported.

Both the C++ and Python interfaces support parallel computations us-
ing multiple threads on a single node, using multiple nodes communi-
cating via MPI and a combination thereof. Preprocessing the mesh is re-
quired in either case: for multi-threaded computations the mesh needs to
be coloured to avoid race conditions when updating the same mesh entity
from different threads simultaneously and for distributed parallel com-
putations the mesh is partitioned such that each process only owns and
reads their respective partition of the mesh.

3.2.2 UFL

The Unified Form Language UFL [Alnæs, 2012, Alnæs et al., 2014] is a
domain-specific language embedded in Python for the description of finite
element variational forms and functionals. UFL is only concerned with
their representation at the finite element level and is oblivious of meshes
and function spaces. It is designed as a front end for form compilers, but
also implements analysis and transformation of expressions. Automatic
differentiation of forms and expressions is supported as well as common
algebraic operators such as transpose, determinant, inverse, trigonometric
functions and elementary functions such as abs, pow, sqrt, exp and ln.

Finite elements are defined by a family, cell and polynomial degree. The
family specifies the kind of basis function to be used such as “Lagrange”
or “DG”, a shorthand for “Discontinuous Lagrange”. UFL relies on the

36

Listing 3.1: Examples of UFL finite element declarations. “CG” is a shorthand for “Con-
tinuous Galerkin” and “DG” for “Discontinuous Galerkin”.

P = FiniteElement('Lagrange ', triangle , 1)
V = VectorElement('CG', triangle , 2)
T = TensorElement('DG', triangle , 0, symmetry=True)

TH = V * P # Create a mixed Taylor -Hood element

Listing 3.2: UFL representation of the bilinear form a and the linear form L for the Poisson
equation.

element = FiniteElement('Lagrange ', triangle , 1)

u = TrialFunction(element)
v = TestFunction(element)
f = Coefficient(element)

a = dot(grad(v), grad(u))*dx
L = v*f*dx

form compiler to provide these basis functions. The cell is the polygonal
shape of the reference element and one of interval, triangle, quadrilateral,
tetrahedron, and hexahedron. Other than the scalar FiniteElement, UFL sup-
ports a vector valued VectorElement and a TensorElement for rank 2 tensors.
The number of components for the vector and tensor valued cases is given
by the geometric dimension of the reference cell. Elements can be arbitrar-
ily combined to form mixed elements, which can themselves be combined
further. Some examples are given in Listing 3.1.

UFL forms are integral expressions whose arguments can be either
or both of (unknown) argument functions {Φk} and (known) coefficient
functions {wk}. Forms with a single argument are called linear, those with
two bilinear and those containing more than two arguments multilinear.
Forms that do not contain any arguments evaluate to a real number and
are known as functionals. A valid form is any UFL expression that is linear
in its arguments {Φk}, may be non-linear in its coefficients {wk}, and is
integrated, that is multiplied by a measure, exactly once. The measure de-
fines the type of integral, which is either a cell integral with measure dx, an
exterior facet integral with measure ds or an interior facet integral with mea-
sure dS. Measures can be indexed, in which case the integral is defined
only on a subset on the domain. Listing 3.2 shows the UFL representation

37

of the Poisson equation using P1 Lagrange elements (Section 2.1.4).

Dot

Grad

L

Grad

R

Argument(FiniteElement, -2) Argument(FiniteElement, -1)

Figure 3.7: Expression tree representation of the bilinear form a from the Poisson equation
in Listing 3.2

Grad

Argument(FiniteElement, -2)

Product

Indexed

L

Indexed

R

MultiIndex((8,), {8: 2})

L R

MultiIndex((8,), {8: 2})

Grad

Argument(FiniteElement, -1)

MultiIndex((8,), {8: 2})

IndexSum

L R

L R

Figure 3.8: Expression tree representation after expanding components

A UFL expression is represented as a direct acyclic graph (DAG) with
nodes being either operators with their operands as children or terminals,
the leafs of the DAG. UFL provides algorithms for pre- and post-order
traversal of these expression trees as well as a number of specialised tree
transformers to expand compound nodes such as gradients and expand
derivatives and indices. Figure 3.7 shows the expression tree representa-
tion2 of the form a from Listing 3.2. The form is the root node with a
single cell integral as descendant, which in turn consists of a dot product
with the two gradients of the arguments as its children. After expanding
compounds, the tree is transformed as shown in Figure 3.8, with the dot

2These trees are created using the ufl2dot function from ufl.algorithms. Note that the
representations of Argument and MultiIndex have been shortened to make the graphs
more compact and readable.

38

Grad

Argument(FiniteElement, -2)

Product

Indexed

R

Indexed

L

Product

Indexed

R

Indexed

L

Grad

L

MultiIndex((FixedIndex(0),), {})

R

Argument(FiniteElement, -1)

MultiIndex((FixedIndex(1),), {})

LR

Sum

LR

LR L R

Figure 3.9: Expression tree representation after expanding components and indices

product expanded into an indexed sum over an index space of dimension
two, the two spatial dimensions of the gradient. Expanding derivatives
does not alter this particular DAG. When subsequently expanding indices
as shown in Figure 3.9, the indexed sum is unrolled into a sum of two
products whose operands are the first and second component of the gra-
dients respectively.

3.2.3 FFC

The FEniCS Form Compiler FFC [Logg et al., 2012d, Kirby and Logg, 2006]
automatically generates problem-specific code for the efficient evaluation
of element tensors from a given multilinear form specified in UFL. FFC
emits optimised low-level code conforming to the UFC interface specifi-
cation described in Section 3.2.5 to a C++ header file to be used with a
UFC compliant finite element implementation, such as DOLFIN. Alterna-
tively, FFC can be called from a Python scripting environment to work as
a just-in-time compiler (JIT) for the evaluation of multilinear forms.

FFC supports element tensor evaluation by both quadrature and tensor
contraction [Ølgaard and Wells, 2010, Kirby and Logg, 2007, see also Sec-
tions 2.1.8 and 2.1.9], and internally calls FIAT (Section 3.2.4) for tabula-
tion of basis functions and their derivatives as well as quadrature points.
A heuristic based on the estimated cost of the tensor representation of
each integral, given the number of coefficients, is used to determine which
representation to use, unless this choice is overridden with a parameter.

39

Stage 1
Analysis

Stage 2
Representation

Stage 3
Optimization

Stage 4
Code generation

Stage 0
Language

Stage 5
Code formatting

Foo.h / Foo.cpp

UFL + metadata

IR

OIR

C++ code

Foo.ufl

UFL

Figure 3.10: Stages of FFC form compilation [adapted from Logg et al., 2012d]

Form compilation in FFC operates in the stages shown in Figure 3.10:
A UFL input file is translated into a set of UFL forms by evaluation in
the Language stage. These forms are preprocessed in the Analysis stage to
extract metadata on the finite elements, coefficients and integrals used in
the forms. In the Representation stage, data needed for code generation,
such as basis functions and degree of freedom mappings, are prepared in
an intermediate representation (IR). If selected, the optional Optimization
stage uses loop invariant code motion, common subexpression elimina-
tion, and precomputation of constants [Ølgaard and Wells, 2010] on the
quadrature IR. Optimisation of the tensor contraction IR with respect to
the number of arithmetic operations is available with the FErari Python
library [Kirby et al., 2005, 2006, Kirby and Scott, 2007], at the expense of
a potentially significantly more expensive form compilation. C++ code
is generated from the IR in the Code generation stage and written to disk
conforming to the UFC specification in the final Code formatting stage.

40

3.2.4 FIAT

The FInite element Automatic Tabulator FIAT [Kirby, 2004, 2012] is a Python
library for the automatic tabulation of finite element basis functions over
polynomial function spaces in one, two and three spatial dimensions.
FIAT generates quadrature points of arbitrary order on the reference sim-
plex and tabulates the basis functions and their derivatives at any given
set of points. The use of FIAT to provide basis functions for FFC enables
support for higher-order H1, H(div) and H(curl) elements.

3.2.5 UFC

The interface between DOLFIN and FFC is specified by the Unified Form-
assembly Code UFC [Alnæs et al., 2012, Alnaes et al., 2009], a C++ header
file defining a standard interface to problem-specific assembly code for a
general-purpose finite element library. DOLFIN’s assembler implements
the UFC interface, while FFC generates the problem-specific inner loop.

UFC defines abstract interfaces for forms which contain finite elements,
degree-of-freedom mappings as well as cell and facet integrals to be imple-
mented for a concrete variational form of interest. Furthermore, it speci-
fies concrete representations of a mesh, a cell of that mesh and a function,
which are used to transfer data between the library and the problem spe-
cific implementation. Lastly, UFC establishes numbering conventions for
reference cells in 1D (interval), 2D (triangle, quadrilateral) and 3D (tetra-
hedron, hexahedron).

For cells, interior and exterior facet integrals, UFC assumes a five-step
assembly process which proceeds sequentially over the mesh cell by cell:

1. Fetch a cell from the mesh and populate a UFC cell with coordinates.

2. Restrict coefficients to the cell, possibly by interpolation of the coef-
ficient evaluated at the set of nodal points, calling evaluate_dofs.

3. Tabulate a local-to-global map of degrees of freedom for each func-
tion space, using tabulate_dofs.

4. Compute the contribution of the local element or interior/exterior
facet tensor, calling tabulate_tensor.

5. Add the local element tensor contribution to the global tensor using
the local-to-global map computed in step 3.

41

3.2.6 Instant

Instant [Wilbers et al., 2012] is a tool for the just-in-time (JIT) compilation
of C/C++ code into a module callable from Python. It is used for inlining
generated code with FFC and DOLFIN. Code to be inlined is passed to
Instant as a string and compiled together with wrapper code generated by
SWIG [Beazley, 2003] into a Python C extension module using Distutils or
CMake. To not incur the compilation overhead more than once, compiled
extension modules are cached in memory and on disk using the SHA1
checksum of the compiled code as the cache key.

SWIG type maps are provided to automatically convert back and forth
between NumPy arrays on the Python side and pairs of plain pointers and
array lengths on the C side. To be able to use OpenMP or external libraries,
Instant allows the specification of extra headers to include, libraries to
link against and the customisation of include directories, library search
directories and compiler flags.

3.3 OP2

OP2 [Giles et al., 2012, 2013] is a domain-specific abstraction for the par-
allel execution of loop kernels over data defined on unstructured grids.
The key feature of OP2 is the transparent control of an optimised parallel
schedule for a variety of target architectures.

3.3.1 Key Concepts

The basic ingredient for the OP2 abstraction is the notion of sets (op_set),
mappings (op_map) between pairs of those sets, and data (op_dat) associated
with a particular set. Data is manipulated by parallel loops (op_par_loop)
executing a user supplied kernel over a given iteration set. As further
parameters, the parallel loop takes access descriptors, containing a data set,
a mapping with an index, and an access mode. The mapping associates
a fixed number of items from the set the data is declared over with each
item of the set the loop iterates over. As a consequence data access can be
direct, in the case where both sets coincide and the mapping is the identity,
or indirect, via the given mapping. There is no need for this mapping
to be injective or surjective. It is furthermore possible to associate each

42

element of the source with multiple elements of the target set, as long
as the arity, the number of target elements associated with each source
element, of this mapping is constant. The access mode specifies how data
is accessed by the kernel: read only, write only, read/write, or read/write
with contention. The kernel is invoked for each element of the given set
and passed data associated with that element, possibly via an indirection.

OP2 has exclusive control over scheduling the parallel execution of the
loop and thus mandates that the result has to be independent of the order
of processing the elements of the iteration set. Loops are always executed
for the entire set they are called with and hence are expected to touch all
the data they are passed.

In writing an OP2 programme, the programmer needs to distinguish
two layers. The user level is the layer where OP2 data structures are ini-
tialised and manipulated via parallel loop calls. The kernel level is the layer
on which user kernels are implemented. A user kernel’s signature must
match the data passed to it in the parallel loop call, which is the data
the kernel is working on. The kernel has no information on which ele-
ment of the iteration set is being processed and there is no possibility for
synchronisation as this would break the arbitrary schedulability.

3.3.2 Design

OP2 is implemented as an active library [Czarnecki et al., 2000], using
domain-specific code generation to produce an optimised implementa-
tion for a specific target architecture. Order of traversal of the set in the
parallel loop, granularity of parallelisation, partitioning and data layout
can be adapted to characteristics of the target architecture via source-to-
source translation of the user programme and kernels. Multi-core CPUs
with OpenMP, NVIDIA GPUs with CUDA and inter-node parallelisation
with MPI were supported at the time of writing.

Design concepts and the components OP2 consists of are shown in Fig-
ure 3.11, which illustrates the control flow in an OP2 programme, the
role of source-to-source translation and how user code interacts with OP2
library components. The user supplies a host programme implemented
using the OP2 host API and a number of kernel subroutines that conform
to the kernel API. This host programme declares OP2 data structures and

43

host API
Fortran, C/C++
(op_decl_set, ...)

op_par_loop
serial ref. impl.

kernel API

source-to-source
translator

transformed OP2 programuser OP2 program

op_par_loop
generated host stub

user kernel

plan generator
plan checker

core library

generated kernel wrapper

transformed user kernel

serial reference binary platform-specific parallel binary

call

source
to
source
transl.

user
code

gen.
host
code

OP2 lib

public
API

gen.
kernel
code

host API
Fortran, C/C++
(op_decl_set, ...)

OP2 control flow

link

Figure 3.11: Control flow in an OP2 programme for the serial reference implementation
(left) and a platform-specific parallel implementation using source-to-source
translation (right)

initialises those with data that can be generated, read from disk or from
another external source, and invokes parallel loops that manipulate this
data using the kernels the user supplied. Since both host and kernel API
are available in C/C++ and Fortran, the user can exploit the full power of
these languages in OP2 programmes as long as the restrictions mentioned
in section 3.3.1 are fulfilled.

While developing a programme or for verification purposes, the user
can run a serial reference implementation where no source-to-source trans-
lation is used, as shown on left hand side of Figure 3.11. Instead, a static
implementation of the parallel loop interface is called, which in turn di-
rectly calls the unmodified user kernels. Performance is expected to be
poor in this case and for a production run a generated implementation
optimised for the target platform is preferable as shown on the right hand
side of Figure 3.11. The source-to-source translator analyses each paral-
lel loop invocation and transforms the host programme to call a gener-
ated stub routine specific to a given kernel. Based on the characteristics
of the loop, a parallel execution plan is requested which defines how the

44

datasets are partitioned for parallel execution, coloured to avoid data races
and write contention, and mapped to hardware execution units. Subse-
quently, the platform-specific kernel is called, which is a wrapper of the
kernel routine provided by the user and transformed as required.

3.4 Stencil Languages

3.4.1 Stencil Computations on Structured Meshes

A large class of computations on regular two, three or higher dimensional
grids in space and time can be described by stencils, which define the rule
for updating a grid point as a function of itself and its nearby neighbours.
Stencil computations have been extensively studied and cache-oblivious
algorithms pioneered by Frigo and Strumpen [2005, 2007].

There are various implementations of DSLs and compilers for generat-
ing and tuning stencil codes on multi-core CPUs and GPUs. These include
Mint [Unat et al., 2011], a pragma-based programming model for stencil
computations targeting CUDA, which has been applied to accelerate a 3D
earthquake simulation with minimal changes to the existing application
[Unat et al., 2012]. The SBLOCK framework [Brandvik and Pullan, 2010]
provides a DSL embedded in Python and accompanying runtime library
for defining stencil computations that are translated into low-level CPU
and GPU kernels which can automatically exchange halo data via MPI
in distributed parallel runs. Zhang and Mueller [2012] delivered a sten-
cil computation framework that performs auto-tuning of the alignment of
data structures and kernel launch parameters on GPUs. Pochoir [Tang
et al., 2011] is a compiler for a domain-specific stencil language embed-
ded in C++, compiling down to a parallel cache-oblivious algorithm in
Cilk, targeting multi-core CPUs. Performance portability of automatically
tuned parallel stencil computations on many-core architectures is demon-
strated by Kamil et al. [2010], generating code from a sequential stencil
expressed in Fortran 95, and the code generation and auto-tuning frame-
work PATUS [Christen et al., 2011] with stencils specified in a DSL embed-
ded in C. Although all these DSLs successfully generate optimized code,
they are limited to structured meshes, which are not discussed further.

45

Listing 3.3: Algorithm and schedule for a 3x3 normalised box filter in two passes: The
first pass produces the image blur_x from input, which is transformed into
blur_y in the second pass.

Func blur_3x3(Func input) {
Func blur_x , blur_y;
Var x, y, xi, yi;

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x,y-1) + blur_x(x,y) + blur_x(x,y+1))/3;

blur_y.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y , x).vectorize(x, 8);

return blur_y;
}

3.4.2 Halide

Halide [Ragan-Kelley et al., 2012, 2013] is a domain-specific language em-
bedded in C++ and optimising compiler for multi-stage image process-
ing pipelines. The compiler synthesises high performance implementa-
tions from a Halide algorithm and schedule, targeting various hardware
architectures including x86/SSE, ARM v7/NEON, CUDA, Native Client,
and OpenCL. Optimisation takes into account parallelism, locality and
the reuse versus recomputation trade-off in a stochastic search over the
space of possible schedules. The authors report speedups of up to 9x over
expertly hand tuned code for a complex local Laplacian pipeline.

Stages in the image processing pipeline are described using the Halide
DSL in a pure functional style, mapping coordinates on an infinite integer
domain to colour values representing an image. Pipelines are formed by
chaining functions. The function in Listing 3.3 defines the algorithm and
schedule for a 3x3 normalised box filter in two passes.

3.4.3 Liszt

Liszt [DeVito et al., 2011] is a domain-specific language embedded in Scala
for the construction of unstructured mesh based PDE solvers. It targets
distributed parallel clusters, SMP systems and GPUs via MPI, pthreads
and CUDA backends. Liszt enhances Scala with first-class abstract data
types for mesh elements such as vertices, edges, faces and cells, which

46

are grouped into sets. Topological relationships of the mesh are implicitly
given through the use of built-in functions to access neighbouring ele-
ments. These allow the Liszt compiler to automatically infer the stencil
for a given computation, assuming a fixed topology during execution.

All data-parallel computations on the mesh are expressed via for-com-
prehensions over a particular entity type of the mesh, where arbitrary
nesting of for-comprehensions is allowed. Calculations in the body of
a comprehension are independent and have no dependencies, allowing
Liszt freedom in the choice of different parallel schedules for different
backends. Liszt implements two different parallel execution strategies:
partitioning with automatic discovery of ghost elements that need to be
communicated for the MPI backend and colouring to avoid data races for
the pthreads and CUDA backends.

Data in a Liszt application is stored in fields, associated with all mesh
elements of a particular type. For the duration of any for-comprehension,
any field can be in exactly one of three states, enforced by the compiler:
read-only, write-only or reduction using an operator. The compiler per-
forms phase-change analysis on each field to determine synchronisation
points and insert backend-specific communication calls.

At first glance, Liszt appears very similar to OP2 described in Section
3.3. The level of abstraction is an element of the mesh in both cases,
however the description the mesh differs significantly. While Liszt uses
local topological functions, OP2 uses explicit user-defined relations be-
tween mesh entities, called maps, forming a graph-like data structure.
Local computations in OP2 are expressed as kernels with explicitly pro-
vided dependencies, whereas in Liszt computations are encapsulated in
for-comprehensions within the regular program flow and dependencies
are automatically inferred by program analysis.

Since Liszt is restricted to storing field data only on mesh elements, it
is considerably less flexible in what a field can represent. Consider a field
representing the degrees of freedom (DOFs) of a higher-order numerical
scheme. In the case of quadratic or second-order basis functions, DOFs
are associated with the vertices and the midpoints of edges. While this
can be naturally expressed in OP2 by associating six elements of the set
of DOFs with each triangle element, Liszt requires the user to explicitly
manage two fields, one on the vertices and one on the edges.

47

Liszt’s high-level semantic operators provide elegant means to build
solvers operating on unstructured meshes. However, its embedding in
Scala makes it considerably harder to interface with third party code and
established scientific libraries such as linear algebra backends.

3.5 Conclusions

In this chapter, a landscape of successful approaches to abstracting scien-
tific computations has been laid out, spanning a range of applications and
implementation choices. Combining the goals of efficiency, portability,
maintainability and composability however remains a challenge.

Libraries, presented in Section 3.1, have been successfully employed
to abstract coarse-grained operations, such as linear algebra. Portabil-
ity between different hardware architectures however is challenging and
adding support for a new platform usually requires a substantial rewrite
and deep familiarity with the library’s implementation. Due to their fre-
quently monolithic nature, the composability of libraries is furthermore
restricted to use cases foreseen by the developers and exposed in the API.

Domain-specific approaches for stencil computations, exposed in Sec-
tion 3.4, have successfully demonstrated the generation of efficient code on
different hardware architectures for structured grid applications. While
Liszt is explicitly aimed at portable PDE solvers on unstructured meshes,
some design decisions have been identified as questionable regarding its
applicability to complex finite element computations.

OP2, introduced in Section 3.3, is a suitable abstraction for executing
kernels over unstructured meshes. However, the limitations imposed by
static source-to-source translation and the lack of support for matrices
are a barrier to adoption for finite element local assembly. Adding those
missing features to the OP2 framework proved infeasible, which led to the
design of PyOP2, described in Chapter 4, drawing inspiration from OP2.

The FEniCS project provides a comprehensive tool box for finite element
computations, centred around the C++ library DOLFIN. Its unified form
language UFL and the FEniCS form compiler FFC are essential building
blocks in the design of the finite element framework Firedrake described
in Chapter 5.

48

Chapter 4

PyOP2 - A DSL for Parallel
Computations on Unstructured
Meshes

Many numerical algorithms and scientific computations on unstructured
meshes can be viewed as the independent application of a local operation,
expressible as a computational kernel, everywhere on a mesh, which lends
itself naturally to parallel computation. In some cases contributions from
local operations are aggregated in a reduction to produce the final result.

PyOP2 is a domain-specific language (DSL) embedded in Python for
the parallel executions of computational kernels on unstructured meshes
or fixed-degree graphs, which implements this abstraction. The topology
of an unstructured mesh is described by sets of entities such as vertices,
edges and cells, and the connectivity between them. Data defined on the
mesh is managed by abstracted data structures for vectors and matrices.

PyOP2 targets both multi- and many-core architectures via a unified
API which requires no changes to user code to be able to run on different
backends. Computations over the mesh are efficiently executed as low-
level, platform-specific code generated and just-in-time (JIT) compiled at
runtime. This runtime architecture allows PyOP2 to reason about and
interact with concrete objects representing the actual data and problem
being solved instead of having to parse, analyse and transform code.

At the same time PyOP2 is carefully optimised to avoid unncessary
recomputation through sophisticated caching mechanisms. Computation-

49

ally heavy parts are either executed in native generated code or imple-
mented as Python extension modules, combining the efficiency of opti-
mised low-level code with the flexibility and interactivity of Python.

This chapter describes the design of PyOP2, starting with an overview
of the concepts and architecture, and continuing with detailed expositions
of the support for multiple backends, distributed parallelism, mixed and
coupled problems and the linear algebra interface. PyOP2 is an essential
building block in the design of Firedrake described in Chapter 5.

4.1 Concepts

PyOP2 conceptually distinguishes the topological connectivity between
sets of user defined classes of entities (Section 4.1.1), data defined on these
sets (Section 4.1.2) and computations as the uniform execution of kernels
over sets of entities (Section 4.1.3). There is no predefined meaning associ-
ated with the classes of entities described by sets and no inherent concept
of a mesh. This makes PyOP2 applicable as a building block for a wide
range of unstructured applications.

While the following discussion is limited to mesh based applications, it
is worth noting that unstructured meshes are isomorphic to graphs, with
vertices of a mesh corresponding to nodes of a graph and mappings be-
tween mesh entities corresponding to links in a graph. PyOP2 is therefore
equally suitable for computations on fixed-degree graphs.

4.1.1 Sets and Mappings

The topology of an unstructured mesh is defined by sets of entities and
mappings between these sets. While maps define the connectivity be-
tween entities or degrees of freedom (DOFs), for example associating an
edge with its incident vertices, sets are abstract representations of mesh
entities or DOFs on which data is defined, and are characterised only by
their cardinality. Sets representing DOFs may coincide with sets of mesh
entities, however unlike Liszt presented in Section 3.4.3, PyOP2 is not lim-
ited to this case. For example, DOFs for a field defined on the vertices
of the mesh and the midpoints of edges connecting the vertices are de-
fined by a single set with a cardinality equal to the sum of vertices and

50

edges. The data values associated with these DOFs can therefore be stored
contiguously as described in Section 4.1.2.

Maps are defined by a source and target set and a constant arity, that
is, each element in the source set is associated with the same number
of elements in the target set. Associations are stored in a logically two-
dimensional array, allowing the lookup of elements associated with each
source set element by index. This restriction to constant arity is due to
PyOP2’s computation model of uniformly executing the same kernel for
each iteration set element and excludes certain kinds of mappings. A
map from vertices to incident edges or cells is only possible on a very reg-
ular mesh in which the multiplicity of every vertex is constant. Similarly,
meshes containing different types of cells, for example mixing triangles
and quads, cannot be straightforwardly represented. Sets and maps are
immutable and considered equal only if they are object-identical.

A set vertices, a set edges and a map edges2vertices associating the two
incident vertices with each edge are declared as follows:

vertices = op2.Set(4)

edges = op2.Set(3)

edges2vertices = op2.Map(edges , vertices , 2, [[0 ,1] ,[1 ,2] ,[2 ,3]])

4.1.2 Data

Three kinds of user provided data are distinguished by PyOP2: data de-
fined on a Set, often referred to as a field, is represented by a Dat, data
that has no association with a Set by a Global and read-only data that is
visible globally and referred to by a unique identifier is declared as Const.
Examples of the use of these data types are given in Section 4.1.3.

Dat

A PyOP2 Dat provides a completely abstracted representation of a vector
holding data defined on a given Set, where the actual values might be
stored in CPU or GPU memory, depending on the chosen backend (Sec-
tion 4.4). When running distributed parallel computations (Section 4.7),
the Dat is partitioned among all participating processors and manages its
halo, the overlap region containing data from neighbouring processors re-
quired to perform computations over the partition boundary. Storage,

51

layout, halo exchange and host to device transfer of this data are auto-
matically managed transparently to the user or application using PyOP2.
Users need to explicitly request access to modify this data outside of a
PyOP2 context, which allows PyOP2 to keep track of these modifications.

Unlike the immutable sets and maps, Dats are dynamic data types which
manage their own state and respond appropriately to queries from PyOP2
or the user. This state includes whether or not data is allocated in CPU or,
if applicable, accelerator memory and which copies of the data are up-to-
date. Similarly, the Dat is aware of user modifications and whether a halo
exchange is needed. PyOP2 can therefore call operations such as a data
transfer or halo exchange on the Dat unconditionally where they might
be needed and the Dat decides on its own authority whether an action is
required or the operation returns immediately. Unnecessary operations
are thereby avoided and PyOP2’s design considerably simplified.

In most contexts, a Dat can be used as a vector in a mathematical or
linear algebra sense. Common arithmetic operations such as pointwise
addition, subtraction, multiplication and division are supported, provided
the shape matches. If one of the operands is a scalar, the operation is
applied to all components of the Dat. All operations are implemented in a
backend-independent manner using parallel loops (Section 4.1.3).

Since a Set only defines a cardinality, data declared as a Dat on a Set

needs additional metadata to allow PyOP2 to interpret the data and to
specify how much memory is required to store it. This metadata is the data
type and the shape of the data associated with any given set element. The
shape can be a scalar or a one- or higher-dimensional vector of arbitrary
extent and is associated with a DataSet on which the Dat is defined. The
number of data values stored by a Dat is fully defined by its DataSet. Similar
to the restriction on maps, the shape and therefore the size of the data
associated which each Set element must be uniform. PyOP2 supports all
common primitive data types provided by NumPy.

Declaring coordinate data on the Set of vertices defined above, where
two float coordinates are associated with each vertex, is done like this:

dvertices = op2.DataSet(vertices , dim=2)

coordinates = op2.Dat(dvertices ,

[[0.0 ,0.0] ,[0.0 ,1.0] ,[1.0 ,1.0] ,[1.0 ,0.0]] ,

dtype=float)

52

Global

Data with no association to a set is represented by a Global, characterised
by a shape and data type, which have the same interpretation as for a Dat.
A 2x2 elasticity tensor would be defined as follows:

elasticity = op2.Global ((2,2), [[1.0 ,0.0] ,[0.0 ,1.0]] , dtype=float)

Const

Data that is globally visible and read-only to kernels is declared with a
Const and needs to have a globally unique identifier. Const data does not
need to be passed as an argument to a parallel loop, but is accessible in a
kernel by name. A globally visible parameter eps is declared as follows:

eps = op2.Const(1, 1e-14, name="eps", dtype=float)

Mat

In a PyOP2 context, a – generally sparse – matrix is a linear operator from
one Set to another. In other words, it is a linear function which takes a Dat

on one set A and returns the value of a Dat on another set B. Of course, in
particular, A may be the same set as B. This makes the operation of some
matrices equivalent to the operation of a particular PyOP2 kernel.

PyOP2 parallel loops can be used to assemble matrices, represented by
the Mat class, which are defined on a sparsity pattern. The row and column
spaces the sparsity maps between are given by the DataSets of A and B. A
sparsity pattern is built from one or more pairs of Maps, supporting matri-
ces that are assembled from more thane one kernel. Each pair contains a
Map for the row and column space of the matrix respectively. The sparsity
uniquely defines the non-zero structure of the sparse matrix and can be
constructed from those mappings alone, using an algorithm detailed in
Section 4.6.2. A Mat is therefore defined by a Sparsity and a data type.

Since the construction of large sparsity patterns is a very expensive op-
eration, the decoupling of Mat and Sparsity allows the reuse of the same
sparsity pattern for a number of matrices. PyOP2 caches sparsity patterns
as described in Section 4.3.2. Declaring a sparsity on the same maps as a
previously declared sparsity yields the cached object instead of building

53

another one. A matrix of floats on a sparsity which spans from the space
of vertices to the space of vertices via the edges is declared as follows:

sparsity = op2.Sparsity ((dvertices , dvertices),

[(edges2vertices , edges2vertices)])

matrix = op2.Mat(sparsity , float)

4.1.3 Parallel Loops

Computations in PyOP2 are executed by mapping the application of a
kernel over an iteration set. Parallel loops are the dynamic core construct
of PyOP2 and hide most of its complexity such as parallel scheduling,
code generation, data transfer from and to device memory, if needed, and
staging of data into on-chip memory. Kernels must be independent of
the order in which they are executed over the iteration set to allow PyOP2
maximum flexibility to schedule the computation in the most efficient way.

The kernel is executed over the entire iteration set, which is usually a
Set of mesh entities or degrees of freedom. Iteration over certain regions of
the mesh, for example the boundary, is supported through Subsets, which
are restrictions of a Set to a given list of entities identified by their index,
which can be empty. When running in parallel, an empty iteration set is a
way for a process to not participate in a parallel loop, which is a collective
operation (Section 4.7). In Firedrake, subsets are used to hold boundary
entities of a given marker region, which may only be defined on some
of the partitions of a distributed mesh. Subsets may only be used as the
iteration set in a parallel loop and can not hold data or define Maps.

A parallel loop invocation takes the iteration set and the kernel to oper-
ate on as its first two arguments, followed by a number of access descriptors
defining how data is accessed by the kernel. Access descriptors are con-
structed from a data carrier, a Dat, Mat or Global, by passing the access mode
and the map, in the case of a Dat, or pair of maps, in the case of a Mat, to be
used to indirectly access the data1. The mapping is required for an indi-
rectly accessed Dat, which is declared on a Set different from the iteration set
of the parallel loop. For directly accessed data, defined on the iteration set,

1Dat, Mat and Global implement the __call__ method, creating and returning an Arg type
representing an access descriptor, which is not part of the public API. It serves as a
transient container for the data carrier, access mode and mapping in a parallel loop call.

54

the map is omitted and only the access mode is specified. A Mat is always
accessed indirectly through a pair of maps used to build the Sparsity.

Access descriptors define how data is accessed by the kernel and tell
PyOP2 whether to stage in data before and stage it out after kernel ex-
ecution and whether write contention needs to be accounted for. Valid
access modes are READ (read-only), WRITE (write-only), RW (read-write), INC

(increment), MIN (minimum reduction) or MAX (maximum reduction). Not
all descriptors apply to all PyOP2 data types. A Dat can have modes READ,
WRITE, RW and INC. For a Global, the valid modes are READ, INC, MIN and MAX,
where the three latter imply a reduction. Mats only support WRITE and INC2.

Parallel loops are a generic interface, which can be used for very differ-
ent purposes as illustrated by the examples given in the following. Kernel
signatures and the way data is accessed are described in Section 4.2.

Direct loop example

Consider a parallel loop that translates the coordinate field by an offset

defined as a Const. The kernel therefore has access to the local variable
offset even though it has not been passed as an argument to the parallel
loop. This loop is direct and the argument coordinates is read and written:

op2.Const(2, [1.0, 1.0], dtype=float , name="offset");

translate = op2.Kernel("""

void translate(double * coords) {

coords [0] += offset [0];

coords [1] += offset [1];

}""", "translate")

op2.par_loop(translate , vertices , coordinates(op2.RW))

Matrix example

A parallel loop assembling the matrix via a kernel, which is omitted for
brevity, iterating over the edges and taking coordinates as input data is given
below. The matrix is the output argument of this parallel loop with ac-
cess descriptor INC, since contributions from different vertices are accumu-
lated via the edges2vertices mapping. Note that the mappings are indexed

2Reading from a Mat is conceptually possible, however not presently implemented.

55

with the iteration indices op2.i[0] and op2.i[1] respectively. This means that
PyOP2 generates a two-dimensional local iteration space (Section 4.2.4) with
an extent in each dimension equal to the arity of the Map edges2vertices for
any given element of the iteration set. The coordinates are accessed via the
same mapping as read-only input data using the access descriptor READ:

op2.par_loop(kernel , edges ,

matrix(op2.INC , (edges2vertices[op2.i[0]],

edges2vertices[op2.i[1]])),

coordinates(op2.READ , edges2vertices))

Global reduction example

Globals are used primarily for reductions where a given quantity on a
field is reduced to a single number by summation or finding the min-
imum or maximum. Consider a kernel computing the L2 norm of the
pressure field defined on the set of vertices as l2norm. Note that the Dat

constructor automatically creates an anonymous DataSet of dimension 1 if
a Set is passed as the first argument. We assume pressure is the result of
some prior computation and only give the declaration for context.

pressure = op2.Dat(vertices , [...], dtype=float)

l2norm = op2.Global(dim=1, data =[0.0])

norm = op2.Kernel("""

void norm(double * out , double * field) {

*out += field [0] * field [0];

}""", "norm")

op2.par_loop(norm , vertices ,

l2norm(op2.INC),

pressure(op2.READ))

4.2 Kernels

Local computations to be performed for each element of an iteration set
are defined by a kernel, which has a local view of the data and can only read
and write data associated with the current element directly or via one level
of indirection. Any data read by the kernel, that is accessed as READ, RW or

56

INC, is automatically gathered via the mapping relationship in the staging
in phase and the kernel is passed pointers to local data. Similarly, after the
kernel has been invoked, any modified data i.e. accessed as WRITE, RW or INC

is scattered back out via the Map in the staging out phase. It is only safe for
a kernel to manipulate data in the way declared via the access descriptor
in the parallel loop call. Any modifications to an argument accessed read-
only would not be written back since the staging out phase is skipped
for this argument. Similarly, the result of reading an argument declared
as write-only is undefined since the data has not been staged in and the
memory is uninitialised. The access mode WRITE is only safe to use for
directly accessed arguments where each set element is written to exactly
once. When accumulating data via a map where multiple iteration set
elements are associated with the same element of the target set, the access
descriptor INC must be used to notify PyOP2 of the write contention.

4.2.1 Kernel API

Kernels are declared as a C code string or an abstract syntax tree (AST),
which efficiently supports programmatic kernel generation as well as hand-
written kernels. The AST representation allows loop nest optimisations,
in particular for finite element kernels, by the COFFEE AST optimiser
described in Section 4.2.2. Kernel code is implemented in a restricted
subset of C99, which is supported by all PyOP2 backends, detailed in Sec-
tion 4.4, without requiring a full source-to-source translation of the kernel
code. The kernel function name passed to the constructor must match the
function name in the C kernel signature. Consider a kernel computing the
midpoint of a triangle given the three vertex coordinates:

midpoint = op2.Kernel("""

void midpoint(double p[2], double *coords [2]) {

p[0] = (coords [0][0] + coords [1][0] + coords [2][0]) / 3.0;

p[1] = (coords [0][1] + coords [1][1] + coords [2][1]) / 3.0;

}""", "midpoint")

Below is the parallel loop invocation for the midpoint kernel above. A
convenience shorthand allows the declaration of an anonymous DataSet of
a dimension greater than one by using the ** operator. The actual data in
the declaration of the Map cell2vertex and Dat coordinates is omitted.

57

vertices = op2.Set(num_vertices)

cells = op2.Set(num_cells)

cell2vertex = op2.Map(cells , vertices , 3, [...])

coordinates = op2.Dat(vertices ** 2, [...], dtype=float)

midpoints = op2.Dat(cells ** 2, dtype=float)

op2.par_loop(midpoint , cells ,

midpoints(op2.WRITE),

coordinates(op2.READ , cell2vertex))

Kernel arguments and access descriptors are matched by position. The
kernel argument p corresponds to the access descriptor for midpoints and
coords to the access descriptor for coordinates respectively. Direct arguments
such as midpoints are passed to the kernel as a double *, indirect arguments
such as coordinates as a double ** with the first indirection index due to the
map and the second index due the data dimension.

The optional flag flatten is used to create access descriptors for kernels
which expect data to be laid out by component of the Dat (Section 4.2.3):

midpoint = op2.Kernel("""

void midpoint(double p[2], double *coords [1]) {

p[0] = (coords [0][0] + coords [1][0] + coords [2][0]) / 3.0;

p[1] = (coords [3][0] + coords [4][0] + coords [5][0]) / 3.0;

}""", "midpoint")

op2.par_loop(midpoint , cells ,

midpoints(op2.WRITE),

coordinates(op2.READ , cell2vertex , flatten=True))

4.2.2 COFFEE Abstract Syntax Tree Optimiser

Kernels are initialised with either a C code string or an abstract syntax
tree (AST), from which C code is generated. The AST representation pro-
vides the opportunity for optimisation through the COFFEE (COmpiler
For Finite Element local assEmbly) AST optimiser [Luporini et al., 2014],
which specialises on finite element local assembly kernels.

COFFEE performs platform-specific optimisations on the AST with the
goals of minimising the number of floating-point operations and improv-

58

ing instruction level parallelism through the use of SIMD (Single Instruc-
tion Multiple Data) vectorisation. The optimiser can detect invariant sub
expressions and hoist them out of the loop nest, permute and unroll loop
nests and vectorise expressions. The last step may require padding of the
data and enforcing alignment constraints to match the target SIMD ar-
chitecture. COFFEE supports both SSE (Streaming SIMD Extensions) and
AVX (Advanced Vector Extensions) instruction sets.

4.2.3 Data Layout

Data for a Dat declared on a Set is stored contiguously for all elements of
the Set. For each element, this is a contiguous chunk of data of a shape
given by the DataSet dim and the data type of the Dat, laid out in row-major
order. Its size is the product of the dim tuple extents and the data type size.

(dim 2)
index

argument Dat

iteration Set i i+1

2i 2i+1

Figure 4.1: Data layout for a directly accessed Dat argument with dim 2

During execution of the par_loop, the kernel is called for each element of
the iteration set and passed data for each of its arguments corresponding
to the current Set element i only. For a directly accessed argument such
as midpoints above, the kernel is passed a pointer to the beginning of the
chunk of data for the element i the kernel is currently called for as illus-
trated in Figure 4.1. In CUDA and OpenCL i is the global thread id since
the kernel is launched in parallel for all elements.

For an indirectly accessed argument such as coordinates above, PyOP2
gathers pointers to the data via the indirection Map. The kernel is passed
a list of pointers of length corresponding to the Map arity, in the example
above 3. Each of these points to the data chunk for the target Set element
given by Map entries (i, 0), (i, 1) and (i, 2) as shown in Figure 4.2.

If the argument is created with the keyword argument flatten set to
True, a flattened vector of pointers is passed to the kernel as illustrated in
Figure 4.3. The length of this vector is the product of the extents of the dim

tuple and the arity of the Map, which is 6 in the example above. Each entry

59

argument Dat

iteration Set i

3i 3i+1 3i+2

2m[i,0]2m[i,1] 2m[i,2]

argument Map
(arity 3)

(dim 2)

kernel Arg

index

index

pointer

Figure 4.2: Data layout for a Dat argument with dim 2 indirectly accessed through a Map of
arity 3

argument Dat

iteration Set i

3i 3i+1 3i+2

2m[i,0]2m[i,1] 2m[i,2]

argument Map
(arity 3)

(dim 2)

kernel Arg

index

index

pointer
(flattened)

Figure 4.3: Data layout for a flattened Dat argument with dim 2 indirectly accessed through
a Map of arity 3

60

points to a single data value of the Dat. The ordering is by component of
dim, that is the first component of each data item for each element in the
target set pointed to by the map followed by the second component etc.

4.2.4 Local Iteration Spaces

PyOP2 does not impose any limitations on the complexity of kernels and
the amount of data they may read or write. In general, a kernel is executed
by a single thread per iteration set element and the resource usage is
proportional to the size of its output data, termed local tensor.

Executing a complex kernel by a single thread may therefore not be
the most efficient strategy on many-core platforms with a high degree
of concurrency but a limited amount of registers and on-chip resources
per thread. To improve the efficiency for kernels with large working set
sizes, their execution over the local iteration space for each iteration set
element can be distributed among several threads. Each thread computes
only a subset of this local iteration space, thereby increasing the level of
parallelism and lowering the amount of resources required per thread.

To illustrate the concept, consider a finite element local assembly ker-
nel for vector-valued basis functions of second order on triangles. This is
merely an example and there are more complex kernels computing con-
siderably larger local tensors commonly found in finite element compu-
tations, in particular for higher-order basis functions. Invoked for each
element in the iteration set, this kernel computes a 12× 12 local tensor:

void kernel(double A[12][12] , ...) {

...

// loops over the local iteration space

for (int j = 0; j < 12; j++) {

for (int k = 0; k < 12; k++) {

A[j][k] += ...

}

}

}

Using iteration space, the kernel above changes as follows:

void kernel(double A[1][1] , ..., int j, int k) {

...

// compute result for position (j, k) in local iteration space

A[0][0] += ...

}

61

Note how the doubly nested loop over basis functions is hoisted out
of the kernel, which receives the position in the local iteration space for
which to compute the result as additional arguments j and k.

PyOP2 is then free to schedule the execution over the local iteration
space for each set element and choose the number of threads to use. On a
CPU with large caches and a small number of concurrent threads, a single
thread for the entire local iteration space is more efficient for most cases.
On many-core platforms, where the kernel is executed in parallel over the
iteration set, a larger number of threads can be launched to compute a
subset of the local iteration space each, as shown in Figure 4.4 for a kernel
computing a 6× 6 local tensor with a single and 36 threads respectively.

0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5

3,0 3,1 3,2 3,3 3,4 3,5

4,0 4,1 4,2 4,3 4,4 4,5

5,0 5,1 5,2 5,3 5,4 5,5

Figure 4.4: Unified iteration space (left) and local iteration space (right) for a kernel com-
puting a 6× 6 local tensor by a single thread and by 36 threads (0, 0) . . . (5, 5)

When using a kernel with a local iteration space, the corresponding
maps need to be indexed with an IterationIndex i in the access descriptor.

4.3 Architecture

As described in 4.1, PyOP2 exposes an API that allows users to declare
the topology of unstructured meshes in the form of Sets and Maps and data
in the form of Dats, Mats, Globals and Consts. Computations on this data are
defined in Kernels described in 4.2 and executed by parallel loops.

The API is the frontend to the PyOP2 runtime code generation and
compilation architecture, which supports the generation and just-in-time

62

(JIT) compilation of low-level code for a range of backends described in
4.4 and the efficient scheduling of parallel computations. A schematic
overview of the PyOP2 architecture is given in Figure 4.5.

OpenCL CUDA

just-in-time (JIT) compile
kernels + marshalling code

PyOpenCL
(JIT)

PyCUDA
(JIT)

CPU OpenMPCPU seq.

MPI

PyOP2 Lib & Runtime Core
colouring, parallel scheduling

COFFEE AST Optimiser

Lin. algebra
PETSc/Cusp

KernelsData
Access

Descriptors

Application code

Backends

Code generation

PyOP2 core

User code

Figure 4.5: Schematic overview of the PyOP2 runtime computation architecture

4.3.1 Parallel Loops

From an outside perspective, PyOP2 is a Python library, with performance
critical library functions implemented in Cython [Behnel et al., 2011]. A
user’s application code makes calls to the PyOP2 API, most of which are
conventional library calls. The exception are par_loop calls, which encapsu-
late PyOP2’s runtime core functionality performing backend-specific code
generation. Executing a parallel loop comprises the following steps:

1. Compute a parallel execution plan, including information for effi-
cient staging of data and partitioning and colouring of the iteration
set for conflict-free parallel execution. This process is described in
Section 4.5 and does not apply to the sequential backend.

2. Generate backend-specific code for executing the computation for a
given set of par_loop arguments as detailed in Section 4.4 according
to the execution plan computed in the previous step.

63

3. Pass the generated code to a backend-specific tool chain for just-in-
time compilation, producing a shared library callable as a Python
module which is dynamically loaded. This module is cached on
disk to save recompilation when the same computation is launched
again for the same backend.

4. Build the backend-specific list of arguments to be passed to the gen-
erated code, which may initiate host to device data transfer for the
CUDA and OpenCL backends.

5. Call into the generated module to perform the actual computation.
To efficiently overlap distributed parallel computations with com-
munication, this involves separate calls for the regions owned by the
current processor and the halo as described in Section 4.7.

6. Perform any necessary reductions for Globals.

When the par_loop function is called, PyOP2 instantiates a backend-
specific ParLoop object behind the scenes, which manages the process laid
out above. Similar to other types, this is a runtime data structure, which
manages state and can be queried and interacted with. The ParLoop keeps
a list of arguments and classifies those as direct, indirect, needing global
reduction etc. If all the arguments are direct, a ParLoop is identified as di-
rect, otherwise as indirect. Code generated for direct loops is considerably
simpler and the ParLoop guides code generation accordingly.

The manifestation of parallel loops as objects enables the design of a
lazy evaluation scheme where computations are postponed until results
are requested. Upon creation, a ParLoop is not immediately executed. In-
stead, its read and write dependencies are identified and it is appended
to an execution trace. While not presently implemented, this architecture
enables transformations of the execution trace, including fusion of kernels
and loops where allowed by the dependencies. When the actual data val-
ues of a Dat, Mat or Global are accessed, the evaluation of the dependency
chain of this result is scheduled and the corresponding ParLoops executed.
The correct execution of deferred computation is performed transparently
to the users by enforcing read and write dependencies of Kernels.

4.3.2 Caching

Runtime code generation and compilation used when executing parallel
loops carries a substantial cost that is not immediately apparent to a user

64

writing a PyOP2 programme. To mitigate this overhead as much as pos-
sible and ensure compilation of code for a particular loop is only done
once, PyOP2 uses caching at several levels.

Global caches

Shared objects built from generated code are cached on disk, using an
md5 hash as a fingerprint of the backend-specific code as the cache key.
Any subsequent run using the same parallel loop, not necessarily from
the same user programme, will not have to pay any compilation cost.
In addition to that, the function pointer to the compiled parallel loop is
cached in memory, such that further invocations of the same loop can
jump straight into the compiled code without even having to go through
the code generation stage again.

This cache is keyed on the kernel and the metadata of the arguments,
such as the arity of maps and datasets, but not the data itself. In particular
the size of the iteration set and any maps derived from it do not factor into
the cache key, since the generated code does not depend on it. Parallel
loops are therefore independent of the data they are executed over and
for this reason, the cache is required to be global.

Kernels are also cached globally since they undergo a preprocessing
stage, which is saved when a kernel is instantiated again with the same
code or an equivalent abstract syntax tree (AST).

Object caches

Furthermore, PyOP2 builds a hierarchy of transient objects on immutable
Sets and Maps. Other objects built on top of these are cached on their
parent object. A DataSet is cached on the Set it is built from and a Sparsity

is cached on the Set of its row DataSet. Mixed types described in Section
4.8 are cached on the Set underlying their first component. Thereby, the
axiom that equality for a Set and Map means identity is extended to all these
types, which makes equality checks very cheap, since comparing the id of
the Python object, its memory address, is sufficient.

The motivation for caching sparsities is that they are expensive to con-
struct but only depend on the unique set of arguments they are built from.
Caching avoids rebuilding an identical sparsity from identical arguments.

65

Caching on the underlying Set rather than building a global cache means
cached objects do not need to be kept around indefinitely, but their life-
time is tied to the lifetime of the Set they are cached on. Once all references
to the Set and the cached objects are lost they become eligible for garbage
collection. This strategy can however be defeated by users holding on to
references to either of these objects for longer than needed.

The data carriers Dat, Mat and Global are not cached. Const objects are
globally unique, but for semantic rather than efficiency reasons.

4.3.3 Multiple Backend Support via Unified API

While PyOP2 supports multiple backends, a unified API is provided to
the user. This means no changes to user code are required, regardless of
which backend the computations are running on. The backend is selected
when initialising PyOP2 or by exporting an environment variable and
defaults to sequential if not set through either mechanism. Once chosen,
the backend cannot be changed in the running Python interpreter session.

opencl.pyOpenCL backend
cuda.pyCUDA backend

openmp.pyOpenMP backend
sequential backend

Set Map DataSet Dat Mat ...

sequential.py

backend dispatch

BackendSelector

backends.py

backend __call__

public API

Set Map DataSet Dat Mat

op2.py

...

__metaclass____init__

__dict__

Figure 4.6: PyOP2 backend selection and dispatch mechanism

The implementation of this unified API is achieved with a dispatch
mechanism, where all classes and functions that form the public API de-
fined in the op2 module are proxies for the chosen backend-specific imple-
mentations. As illustrated in Figure 4.6, a metaclass, the BackendSelector,
takes care of instantiating a backend-specific version of the requested class

66

when an object of such a proxy class is constructed. During PyOP2 initial-
isation, the BackendSelector imports the Python module implementing the
backend chosen via the configuration mechanism described above and
keeps a handle to it. When an object of a proxy class is constructed, the
BackendSelector’s __call__ method looks up the requested class in the back-
end module namespace, calls its constructor and returns the object. To
make this process entirely transparent to the user, the metaclass further-
more takes care of setting docstrings on the proxy class and forwarding
any instance and subclass checks to the backend-specific class. As a con-
sequence, the unified API gives the user transparent access to the chosen
backend-specific implementation.

This design of the backend selection and dispatch process contained
in a single module and completely orthogonal to the implementation of
the individual backends significantly simplifies the overall PyOP2 archi-
tecture and could be suitably adapted for other projects. Each backend
is implemented in its own module, oblivious to the described dispatch
process, without any restriction on the use of established object-oriented
design practices such as inheritance and imports from other modules.

4.4 Backends

PyOP2 allows writing portable applications, which run on different multi-
and many-core architectures without changes to the code, as detailed in
Section 4.3.3. Problem- and platform-specific code is generated and com-
piled at runtime with a tool chain specialised for each backend described
in this section. At the time of writing, the supported backends included:

Sequential: Runs sequentially on a single CPU core.

OpenMP: Runs multiple threads on an SMP CPU using OpenMP. The
number of threads is set with the environment variable OMP_NUM_THREADS.

CUDA: Offloads computation to an NVIDIA GPU.

OpenCL: Offloads computation to an OpenCL device (CPU, accelerator)

For computations running on an accelerator with a dedicated memory
space not shared with the host, PyOP2 manages the data in both host
and device memory. Data is transferred automatically as needed while
minimizing the number of data tranfers as described in Section 4.4.2.

67

All backends support distributed parallel computations using MPI as
detailed in Section 4.7. The CUDA and OpenCL device backends support
parallel loops only on Dats, while the sequential and OpenMP host back-
ends have full MPI support. Hybrid parallel computations with OpenMP
are possible, where OMP_NUM_THREADS threads are launched per MPI rank.

4.4.1 Host Backends

Any computation in PyOP2 involves the generation of code at runtime
specific to each individual par_loop. The host backends generate code
which is just-in-time (JIT) compiled using a vendor compiler into a shared
library callable as a Python module via ctypes, Python’s foreign function
interface from the standard library. Compiled shared objects are cached
on disk, keyed on a hash of the generated code, to save recompilation.

Sequential backend

The code generated for orchestrating a sequential par_loop is a C wrapper
function with a for loop, calling the kernel for each element of the re-
spective iteration set. This wrapper also takes care of staging in and out
the data as prescribed by the access descriptors of the parallel loop and
provides the kernel with the local view of the data for the current element.

Both kernel and wrapper function are just-in-time compiled in a single
compilation unit. The kernel call is inlined and does not incur any func-
tion call overhead. It is important to note that this is only possible because
the loop marshalling code is also generated. A library calling into code
that is just-in-time compiled at runtime cannot benefit from inlining.

Recall the parallel loop calling the midpoint kernel from Section 4.2:

op2.par_loop(midpoint , cells ,

midpoints(op2.WRITE),

coordinates(op2.READ , cell2vertex))

PyOP2 compiles the following kernel and wrapper code for this loop:

inline void midpoint(double p[2], double *coords [2]) {

p[0] = (coords [0][0] + coords [1][0] + coords [2][0]) / 3.0;

p[1] = (coords [0][1] + coords [1][1] + coords [2][1]) / 3.0;

}

68

void wrap_midpoint(int start , int end ,

double *arg0_0 ,

double *arg1_0 , int *arg1_0_map0_0) {

double *arg1_0_vec [3];

for (int n = start; n < end; n++) {

// Stage in data for the indirect argument

arg1_0_vec [0] = arg1_0 + (arg1_0_map0_0[n * 3 + 0])* 2;

arg1_0_vec [1] = arg1_0 + (arg1_0_map0_0[n * 3 + 1])* 2;

arg1_0_vec [2] = arg1_0 + (arg1_0_map0_0[n * 3 + 2])* 2;

midpoint(arg0_0 + n * 2, arg1_0_vec);

}

}

Since iteration over subsets is possible, the arguments start and end de-
fine the iteration set indices to iterate over. All remaining arguments are
data pointers from NumPy arrays extracted from the par_loop access de-
scriptors by ctypes. Variable names are generated to avoid name clashes.

The first argument, midpoints, is direct and therefore its data pointer is
passed straight to the kernel. Since two double values are associated with
each element, the offset is twice the current iteration set element. The
second argument coordinates is indirect and hence a Dat-Map pair is passed
to the wrapper. Pointers to the data are gathered via the Map of arity 3 and
staged in the array arg1_0_vec, which is passed to the kernel. Each pointer
is to two consecutive double values, since there are two coords per vertex,
which also requires scaling the indirection indices obtained via the map.
The indirection is completely hidden from the kernel’s point of view and
coordinate data is accessed using the local vertex indices 0 to 2.

OpenMP backend

In the OpenMP backend, the loop over the iteration set is annotated with
pragmas to execute in parallel with multiple threads, each responsible
for a section of iteration set elements. For indirect arguments this may
lead to multiple threads trying to update the same value concurrently. A
thread safe execution schedule is therefore computed as described in Sec-
tion 4.5.3, where the iteration set is partitioned and partitions are coloured
such that those of the same colour can be safely executed concurrently.

The code generated for the parallel loop from above is as follows:

69

void wrap_midpoint(int boffset , int nblocks ,

int *blkmap , int *offset , int *nelems ,

double *arg0_0 ,

double *arg1_0 , int *arg1_0_map0_0) {

double *arg1_0_vec [32][3];

#pragma omp parallel shared(boffset , nblocks , nelems , blkmap)

{

int tid = omp_get_thread_num ();

// Loop over blocks of each colour in parallel

#pragma omp for schedule(static)

for (int __b = boffset; __b < boffset + nblocks; __b++) {

int bid = blkmap[__b]; // Block id

int nelem = nelems[bid]; // # elements in the block

int efirst = offset[bid]; // Offset of first element

for (int n = efirst; n < efirst+ nelem; n++) {

// Stage indirect data into thread private memory

arg1_0_vec[tid][0] = arg1_0 + (arg1_0_map0_0[n*3 + 0])*2;

arg1_0_vec[tid][1] = arg1_0 + (arg1_0_map0_0[n*3 + 1])*2;

arg1_0_vec[tid][2] = arg1_0 + (arg1_0_map0_0[n*3 + 2])*2;

midpoint(arg0_0 + n * 2, arg1_0_vec[tid]);

}

}

}

}

This wrapper is called for each colour with the appropriate number of
blocks nblocks starting at an initial offset boffset. The loop over blocks
of each colour can be executed conflict free in parallel and is therefore
enclosed in an OpenMP parallel region and annotated with an omp for

pragma. For each block, the block id bid given by the block map blkmap is
used to look up the number of elements in a given block and its starting
index in the arrays nelems and offset provided by the execution plan. Each
thread needs its own staging array arg1_0_vec, which is therefore scoped
by the thread id. Note that the loop above is direct and hence there is no
potential for conflicting writes and no need for colouring.

4.4.2 Device Backends

Device backends target accelerators with dedicated memory spaces. The
data carriers Dat, Global and Const therefore have a data array in host mem-
ory and a separate array in device memory, which are automatically man-
aged by PyOP2. The state flag indicates the present state of a data carrier:

DEVICE UNALLOCATED No data is allocated on the device.

70

HOST UNALLOCATED No data is allocated on the host.

DEVICE Data is up-to-date (valid) on the device, but invalid on the host.

HOST Data is up-to-date (valid) on the host, but invalid on the device.

BOTH Data is up-to-date (valid) on both the host and device.

When a par_loop is called, PyOP2 uses the access descriptors to deter-
mine which data needs to be allocated or transferred from host to device
prior to launching the kernel. Data is only transferred if it is out of date at
the target location. All data transfer is triggered lazily, which means the
actual copy only occurs once the data is requested. In particular there is
no eager transfer back of data from device to host. A transfer is only trig-
gered once data is accessed on the host, avoiding unnecessary transfers.
On the other hand this can lead to longer latencies compared to eagerly
transferring data, which could potentially overlap with computation.

A newly created device Dat has no associated device data and starts out
in the state DEVICE_UNALLOCATED. Figure 4.7 shows all actions that involve a
state transition, which can be divided into three groups: calling explicit
data transfer functions (red), access data on the host (black) and using the
Dat in a par_loop (blue). There is no need for users to explicitly initiate data
transfers and the transfer functions are only given for completeness.

Device
unallocated

Device

BothHost

allocate_
device()

par_loop
(write)

par_loop
(write) par_loop

(write)

par_loop (read)
to_device()

access data

access
data_ro

from_
device()

access
datapar_loop

(read)

Figure 4.7: State transitions of a data carrier on PyOP2 device backends

When a device Dat is used in a par_loop for the first time, data is allocated
on the device. If the Dat is only read, the host array is transferred to device
if it was in state HOST or DEVICE_UNALLOCATED before the par_loop and the Dat

is in the state BOTH afterwards, unless it was in state DEVICE in which case

71

it remains in that state. If the Dat is written to, data transfer before the
par_loop is necessary unless the access descriptor is WRITE. The host data is
out of date afterwards and the Dat is in the state DEVICE. An overview of
the state transitions and necessary memory allocations and data transfers
for the two cases is given in Table 4.1.

Initial state par_loop read par_loop written to
DEVICE_UNALLOCATED BOTH (alloc, transfer) DEVICE (alloc, transfer unless WRITE)
DEVICE DEVICE DEVICE

HOST BOTH (transfer) DEVICE (transfer unless WRITE)
BOTH BOTH DEVICE

Table 4.1: Overview of the state transitions and necessary memory allocations (alloc) and
host-to-device data transfers (transfer) for data carriers read and written to as
parallel loop arguments

Accessing data on the host initiates a device to host data transfer if the
Dat is in state DEVICE and leaves it in state HOST when accessing data for
reading and writing and BOTH when accessing it read-only.

The state transitions described above apply in the same way to a Global.
A Const is read-only, never modified on device and therefore never out of
date on the host. Hence there is no state DEVICE and it is not necessary to
copy back Const data from device to host.

CUDA backend

When executing a parallel loop with the CUDA backend, a CUDA kernel
is launched on the host, computing over each element of the iteration
set simultaneously, replacing the for loop used in the host backends as
described in 2.3.1. This generated __global__ stub routine takes care of data
marshalling, staging data in fast shared memory and calling the inlined
user kernel, which is therefore automatically annotated with a __device__

qualifier. Kernels require no CUDA-specific modifications by the user.
As with OpenMP, the iteration set is partitioned and the partitions are

coloured such that all partitions of the same colour can be executed simul-
taneously with a single kernel launch. Colouring, kernel launch configu-
ration and resource requirements as well as placement of data in shared
memory is computed as part of the parallel schedule described in Sec-
tion 4.5. Each partition is computed by a block of threads in parallel and
requires a second level of colouring for the threads within a block.

72

The CUDA backend uses PyCUDA’s [Klöckner et al., 2012] infrastruc-
ture for just-in-time compilation of CUDA kernels and interfacing them
to Python. Linear solvers and sparse matrix data structures implemented
on top of the CUSP library [Bell et al., 2014] are described in Section 4.6.

PyCUDA automatically generates a host stub for the kernel wrapper
generated by PyOP2, given a list of parameter types and unpacks C data
pointers from Python objects and NumPy arrays, which allows PyOP2 to
launch a CUDA kernel straight from Python. Consider the midpoint kernel
from previous examples. The generated CUDA code is as follows:

1 __device__ void midpoint(double p[2], double *coords [2])

2 {

3 p[0] = ((coords [0][0] + coords [1][0]) + coords [2][0]) / 3.0;

4 p[1] = ((coords [0][1] + coords [1][1]) + coords [2][1]) / 3.0;

5 }

6

7 __global__ void __midpoint_stub(int size , int set_offset ,

8 double *arg0 ,

9 double *ind_arg1 , int *ind_map ,

10 short *loc_map , // Offsets of staged data in shared memory

11 int *ind_sizes , // Number of indirectly accessed elements

12 int *ind_offs , // Offsets into indirection maps

13 int block_offset , // Offset into the blkmap for current colour

14 int *blkmap , // Block ids

15 int *offset , // Offsets of blocks in the iteration set

16 int *nelems , // Number of elements per block

17 int *nthrcol , // Number of thread colours per block

18 int *thrcol , // Thread colours for each thread and block

19 int nblocks) { // Number of blocks

20 extern __shared__ char shared [];

21 __shared__ int *ind_arg1_map;

22 __shared__ int ind_arg1_size;

23 __shared__ double * ind_arg1_s;

24 __shared__ int nelem , offset_b , offset_b_abs;

25 double *ind_arg1_vec [3];

26

27 if (blockIdx.x + blockIdx.y * gridDim.x >= nblocks) return;

28 if (threadIdx.x == 0) {

29 int blockId = blkmap[blockIdx.x + blockIdx.y * gridDim.x +

block_offset];

30 nelem = nelems[blockId];

31 offset_b_abs = offset[blockId];

32 offset_b = offset_b_abs - set_offset;

33 ind_arg1_size = ind_sizes [0 + blockId * 1];

34 ind_arg1_map = &ind_map [0* size] + ind_offs [0 + blockId *1];

35 int nbytes = 0;

36 ind_arg1_s = (double *) &shared[nbytes];

37 }

73

38 __syncthreads ();

39

40 // Copy into shared memory

41 for (int idx=threadIdx.x; idx <ind_arg1_size *2; idx+= blockDim.x)

42 ind_arg1_s[idx] = ind_arg1[idx%2+ ind_arg1_map[idx /2]*2];

43 __syncthreads ();

44

45 // process set elements

46 for (int idx = threadIdx.x; idx < nelem; idx += blockDim.x) {

47 ind_arg1_vec [0] = ind_arg1_s + loc_map [0* size+idx+offset_b]*2;

48 ind_arg1_vec [1] = ind_arg1_s + loc_map [1* size+idx+offset_b]*2;

49 ind_arg1_vec [2] = ind_arg1_s + loc_map [2* size+idx+offset_b]*2;

50

51 midpoint(arg0 + 2 * (idx + offset_b_abs), ind_arg1_vec);

52 }

53 }

The CUDA kernel __midpoint_stub is launched for each colour with a
block per partition and 128 threads per block. Inside the kernel each
thread is identified by its thread id threadIdx within a block of threads
identified by a two dimensional block id blockIdx within a grid of blocks.

All threads of a thread block have access to a region of fast, on-chip
shared memory, which is used as a staging area initialised by thread 0
of each block, (lines 28-37 above). A call to __syncthreads() ensures these
initial values are visible to all threads of the block. After this barrier,
all threads cooperatively gather data from the indirectly accessed Dat via
the Map, followed by another synchronisation. Following that, each thread
loops over the elements in the partition with an increment of the block
size. In each iteration a thread-private array of pointers to coordinate data
in shared memory is built, which is then passed to the midpoint kernel.
The first argument is directly accessed and passed as a pointer to global
device memory with a suitable offset.

OpenCL backend

The OpenCL backend is structurally very similar to the CUDA backend. It
uses PyOpenCL [Klöckner et al., 2012] to interface to the OpenCL drivers
and runtime. Due to the unavailability of a suitable OpenCL linear algebra
backend at the time of writing, linear algebra operations are executed by
PETSc [Balay et al., 1997] on the host, as described in Section 4.6.

Consider the midpoint kernel from previous examples, which requires no
user modification. Parameters in the kernel signature are automatically

74

annotated with OpenCL storage qualifiers. PyOpenCL provides Python
wrappers for OpenCL runtime functions to build a kernel from a code
string, set its arguments and enqueue the kernel for execution. It also
takes care of extracting C data pointers from Python objects and NumPy
arrays. PyOP2 generates the following code for the midpoint example:

1 #define ROUND_UP(bytes) (((bytes) + 15) & ˜15)

2

3 void midpoint(__global double p[2], __local double *coords [2]);

4 void midpoint(__global double p[2], __local double *coords [2])

5 {

6 p[0] = ((coords [0][0] + coords [1][0]) + coords [2][0]) / 3.0;

7 p[1] = ((coords [0][1] + coords [1][1]) + coords [2][1]) / 3.0;

8 }

9

10 __kernel __attribute__ ((reqd_work_group_size (668, 1, 1)))

11 void __midpoint_stub(

12 __global double* arg0 ,

13 __global double* ind_arg1 ,

14 int size ,

15 int set_offset ,

16 __global int* p_ind_map ,

17 __global short *p_loc_map ,

18 __global int* p_ind_sizes ,

19 __global int* p_ind_offsets ,

20 __global int* p_blk_map ,

21 __global int* p_offset ,

22 __global int* p_nelems ,

23 __global int* p_nthrcol ,

24 __global int* p_thrcol ,

25 __private int block_offset) {

26 __local char shared [64] __attribute__ ((aligned(sizeof(long))));

27 __local int offset_b;

28 __local int offset_b_abs;

29 __local int active_threads_count;

30

31 int nbytes;

32 int bid;

33

34 int i_1;

35 // shared indirection mappings

36 __global int* __local ind_arg1_map;

37 __local int ind_arg1_size;

38 __local double* __local ind_arg1_s;

39 __local double* ind_arg1_vec [3];

40

41 if (get_local_id (0) == 0) {

42 bid = p_blk_map[get_group_id (0) + block_offset];

43 active_threads_count = p_nelems[bid];

44 offset_b_abs = p_offset[bid];

75

45 offset_b = offset_b_abs - set_offset;

46 ind_arg1_size = p_ind_sizes [0 + bid * 1];

47 ind_arg1_map = &p_ind_map [0 * size] + p_ind_offsets [0+bid *1];

48

49 nbytes = 0;

50 ind_arg1_s = (__local double *) (& shared[nbytes]);

51 nbytes += ROUND_UP(ind_arg1_size * 2 * sizeof(double));

52 }

53 barrier(CLK_LOCAL_MEM_FENCE);

54

55 // staging in of indirect dats

56 for (i_1 = get_local_id (0); i_1 < ind_arg1_size * 2; i_1 +=

get_local_size (0)) {

57 ind_arg1_s[i_1] = ind_arg1[i_1 % 2 + ind_arg1_map[i_1 /2]*2];

58 }

59 barrier(CLK_LOCAL_MEM_FENCE);

60

61 for (i_1 = get_local_id (0); i_1 < active_threads_count; i_1 +=

get_local_size (0)) {

62 ind_arg1_vec [0] = ind_arg1_s+p_loc_map[i_1+0* size+offset_b]*2;

63 ind_arg1_vec [1] = ind_arg1_s+p_loc_map[i_1+1* size+offset_b]*2;

64 ind_arg1_vec [2] = ind_arg1_s+p_loc_map[i_1+2* size+offset_b]*2;

65

66 midpoint ((__global double* __private)(arg0 + (i_1 + offset_b_abs) *

2), ind_arg1_vec);

67 }

68 }

Parallel computations in OpenCL are executed by work items organised
into work groups. OpenCL requires the annotation of all pointer arguments
with the memory region they point to: __global memory is visible to any
work item, __local memory to any work item within the same work group
and __private memory is private to a work item. Local memory therefore
corresponds to CUDA’s shared memory and private memory is called
local memory in CUDA (Table 2.2). The work item id within the work
group is accessed via the OpenCL runtime call get_local_id(0), the work
group id via get_group_id(0). A barrier synchronisation across all work
items of a work group is enforced with a call to barrier(CLK_LOCAL_MEM_FENCE).
Bearing these differences in mind, the OpenCL kernel stub is structurally
equivalent to the corresponding CUDA version above.

The required local memory size per work group reqd_work_group_size is
computed as part of the execution schedule and hard coded as a kernel
attribute. In CUDA this value is a launch parameter to the kernel.

76

4.5 Parallel Execution Plan

All PyOP2 backends with the exception of sequential use shared memory
parallelism and require an execution schedule to be computed at runtime
for each parallel loop. This schedule contains information on the parti-
tioning, staging and colouring of the data for efficient parallel processing
and guides both the code generation and execution of parallel loops.

4.5.1 Partitioning

The iteration set is split into a number of equally sized and contiguous
mini-partitions such that the working set of each mini-partition fits into
shared memory or last level cache. This is orthogonal to the partitioning
required for distributed parallelism with MPI described in Section 4.7.

4.5.2 Local Renumbering and Staging

While a mini-partition is a contiguous chunk of the iteration set, the in-
directly accessed data it references is not necessarily contiguous. For
each mini-partition and unique Dat-Map pair, a mapping from local indices
within the partition to global indices is constructed as the sorted array of
unique Map indices accessed by this partition. At the same time, a global-
to-local mapping is constructed as its inverse.

Data for indirectly accessed Dat arguments on device backends is staged
in shared device memory as described in Section 4.4. For each partition,
the local-to-global mapping indicates where data to be staged in is read
from and the global-to-local mapping gives the location in shared memory
where data has been staged at. The amount of shared memory required
is computed from the size of the local-to-global mapping.

4.5.3 Colouring

A two-level colouring is used to avoid conflicting writes. Partitions are
coloured such that those of the same colour can safely be executed con-
currently. On device backends, threads executing on a partition in parallel
are coloured such that no two threads indirectly reference the same data.
Only par_loop arguments performing an indirect reduction (mode INC) or
assembling a matrix require colouring. Matrices are coloured per row.

77

For each element of a Set indirectly accessed in a par_loop, a bit vector is
used to record which colours indirectly reference it. To colour each thread
within a partition, the algorithm proceeds as follows:

1. Loop over all indirectly accessed arguments and collect the colours
of all Set elements referenced by the current thread in a bit mask.

2. Choose the next available colour as the colour of the current thread.

3. Loop over all Set elements indirectly accessed by the current thread
again and set the new colour in their colour mask.

Since the bit mask is a 32-bit integer, up to 32 colours can be processed
in a single pass, which is sufficient for most applications. If not all threads
can be coloured with 32 distinct colours, the mask is reset and another
pass is made, where each newly allocated colour is offset by 32. Should
another pass be required, the offset is increased to 64 and so on until all
threads are coloured. Thread colouring is shown in Figure 4.8.

edges

shared / staging
memory

vertices

Figure 4.8: Thread colouring within a mini-partition for a Dat on vertices indirectly ac-
cessed in a computation over the edges. The edges are coloured such that no
two edges touch the same vertex within the partition.

The colouring of mini-partitions is done in the same way, except that all
Set elements indirectly accessed by the entire partition are referenced, not
only those accessed by a single thread.

78

4.6 Linear Algebra interface

Parallel loops can be used to assemble a sparse matrix, represented by a
Mat, which is declared on a Sparsity, representing its non-zero structure.
As described in Section 4.1, a sparse matrix is a linear operator that maps
a DataSet representing its row space to a DataSet representing its column
space and vice versa. These two spaces are commonly the same, in which
case the resulting matrix is square.

The kernel in such a loop describes the local contribution and PyOP2
takes care of the necessary global reduction, in this case the assembly of a
global matrix, using the pair of maps provided with the access descriptor.

PyOP2 interfaces to backend-specific third-party libraries to provide
sparse matrix formats, linear solvers and preconditioners. The CUDA
backend uses a custom wrapper around the Cusp library [Bell et al., 2014],
described in Sections 4.6.4 and 4.6.6. PETSc interfaces to Cusp and Vien-
naCL to provide matrices and vectors on the GPU, however insertion via
device kernels is not supported. Other backends harness the PETSc [Balay
et al., 1997] library via its petsc4py [Dalcin et al., 2011] interface.

4.6.1 Sparse Matrix Storage Formats

0 0 0

0

0

0

00

0

0

10

3

3

8

9

7 8 7

0

-2

8 7 5

9 13

Sparse Matrix

10 -2 3 9 7 8 7 3 8 7 5 8 9 13

Values array

0 4 0 1 1 2 3 0 2 3 4 1 3 4

Column indices array

0 2 4 7 11 14

Row pointer array

Figure 4.9: A sparse matrix and its corresponding CSR row pointer, column indices and
values arrays

PETSc uses the popular Compressed Sparse Row (CSR) format to only
store the non-zero entries of a sparse matrix. In CSR, a matrix is stored as
three one-dimensional arrays of row pointers, column indices and values as
shown in Figure 4.9. Values are stored as floats, usually double precision,
and the indices as integer. As the name suggests, non-zero entries are
stored per row, where each non-zero is defined by a pair of column index

79

and corresponding value. The column indices and values arrays there-
fore have a length equal to the total number of non-zero entries. Row
indices are given implicitly by the row pointer array, which contains the
starting index in the column index and values arrays for the non-zero en-
tries of each row. In other words, the non-zeros for row i are at positions
row_ptr[i] up to but not including row_ptr[i+1] in the column index and
values arrays. For each row, entries are sorted by column index to allow
for faster lookups using a binary search.

off
diagonal

off
diagonal

diagonal

diagonal

diagonal

off-diagonal

off-diagonal

0

1

2

Figure 4.10: Distribution of a sparse matrix among 3 MPI processes

For distributed parallel storage with MPI, the rows of the matrix are
distributed evenly among the processors. Each row is then again divided
into a diagonal and an off-diagonal part as illustrated in Figure 4.10. The
diagonal part comprises columns i to j if i and j are the first and last row
owned by a given processor, and the off-diagonal part all other columns.

4.6.2 Building a Sparsity Pattern

The sparsity pattern of a matrix is uniquely defined by the dimensions
of its row and column space, and the local-to-global mappings defining
its non-zero structure. In PyOP2, row and column space of a Sparsity are
defined with a pair of DataSets and the non-zero entries with one or more
pairs of Maps. For a valid sparsity, each row and column map must target
the Set of the row and column DataSet respectively, and each pair of maps
must have matching origin sets. Since sparsity patterns can be expensive
to compute and store, they are cached using these unique attributes as the

80

cache key. Whenever a Sparsity is initialised, an already computed pattern
with the same unique signature is returned if it exists.

A frequent occurrence in finite element methods is the assembly of a
matrix from a form containing integrals over different entity classes, for
example cells and facets. This is naturally supported with multiple par-
allel loops over different iteration sets assembling into the same matrix,
which is declared over a sparsity built from multiple pairs of maps.

Sparsity construction proceeds by iterating each pair of maps and build-
ing a set of indices of the non-zero columns for each row. Each pair of
entries in the row and column maps gives the row and column index of a
non-zero entry in the matrix and therefore the column index is added to
the set of non-zero entries for that particular row. The array of non-zero
entries per row is then determined as the size of the set for each row and
its exclusive scan yields the row pointer array. The column index array is
the concatenation of all the sets. The sequential algorithm is given below:

for rowmap , colmap in maps: # Iterate over pairs of maps

for e in range(rowmap.from_size): # Iterate over elements

for r in range(rowmap.arity):

Look up row in local -to-global row map

row = rowmap.values[r + e*rowmap.arity]

for c in range(colmap.arity):

Look up column in local -to-global column map

diag[row]. insert(colmap.values[c + e * colmap.arity])

In the MPI parallel case, a set of diagonal and off-diagonal column
indices needs to be built for each row as described in 4.6.1:

for rowmap , colmap in maps: # Iterate over pairs of maps

for e in range(rowmap.from_size): # Iterate over elements

for r in range(rowmap.arity):

Look up row in local -to-global row map

row = rowmap.values[r + e*rowmap.arity]

if row < nrows: # Drop off -process entries

for c in range(colmap.arity):

Look up column in local -to-global column map

col = colmap.values[c + e*colmap.arity]

if col < ncols: # Insert into diagonal block

diag[row]. insert(col)

else: # Insert into off -diagonal block

odiag[row]. insert(col)

81

4.6.3 Matrix Assembly

As described in Section 2.1.7, matrices are assembled by adding up local
contributions that are mapped to global matrix entries via a local-to-global
mapping, which in PyOP2 is represented by a pair of maps for the row
and column space. PyOP2 infers from the access descriptors of a parallel
loop whether a matrix is assembled and automatically accumulates the
local contributions into a sparse matrix as illustrated in Figure 4.11.

Figure 4.11: Assembly of a local tensor AK into a global matrix A using the local-to-global
mapping ι1K for rows and ι2K for columns

Consider assembling a matrix A on a sparsity defined by a map from
triangular elements to nodes. The assembly par_loop iterates over the set of
elements, where the elem_node map defines the local-to-global mapping:

nodes = op2.Set(NUM_NODES)

elements = op2.Set(NUM_ELE)

elem_node = op2.Map(elements , nodes , 3, ...)

Sparsity mapping from nodes to nodes using the elem_node map

sparsity = op2.Sparsity ((nodes , nodes), (elem_node , elem_node))

A = op2.Mat(sparsity , np.float64)

Assemble the matrix A using the local assembly kernel

op2.par_loop(assembly_kernel , elements ,

A(op2.INC ,(elem_node[op2.i[0]], elem_node[op2.i[1]])),

...)

82

The generated wrapper code for the above par_loop with the sequential
backend is similar to the following, where initialisation and staging code
described in 4.4.1 have been omitted for brevity. For each element of the
iteration set a buffer for the local tensor is initialised to zero and passed
to the local assembly kernel. The addto_vector call is a wrapper around
PETSc’s MatSetValues, adding the local contributions computed by the user
kernel to the global matrix using the maps given in the access descriptor.
After the loop over the iteration set has finished PyOP2 automatically calls
MatAssemblyBegin and MatAssemblyEnd to finalise matrix assembly.

void wrap_mat_kernel__ (...) {

... // Initialisation code (omitted)

for (int n = start; n < end; n++) {

... // Staging code (omitted)

// local tensor initialised to 0

double buffer_arg0_0 [3][3] = {{0}};

// local assembly kernel

mat_kernel(buffer_arg0_0 , ...);

addto_vector(arg0_0_0 , buffer_arg0_0 , // Mat , local tensor

3, arg0_0_map0_0 + n*3, // #rows , global row idx

3, arg0_0_map1_0 + n*3, // #cols , global col idx

0); // mode: 0 add , 1 insert

}

}

4.6.4 GPU Matrix Assembly

When assembling a matrix on the GPU using the CUDA backend, a CSR
structure is built in two steps, launching separate kernels. The local con-
tributions are first computed for all elements of the iteration set and stored
in global memory in a structure-of-arrays (SoA) data layout such that all
threads can write the data in a coalesced manner. For the example above,
the generated CUDA wrapper kernel is given below, again omitting ini-
tialisation and staging code described in 4.4.2. The user kernel only com-
putes a single element in the local iteration space as detailed in 4.2.3.

__global__ void __assembly_kernel_stub (...,

/* local matrix data array */ double *arg0 ,

/* offset into the array */ int arg0_offset ,

...) {

... // omitted initialisation and shared memory staging code

83

for (int idx = threadIdx.x; idx < nelem; idx += blockDim.x) {

... // omitted staging code

for (int i0 = 0; i0 < 3; ++i0) {

for (int i1 = 0; i1 < 3; ++i1) {

assembly_kernel(

(double (*) [1])(arg0 + arg0_offset + idx*9 + i0*3 + i1),

..., i0, i1);

}

}

}

}

A separate CUDA kernel given below is launched afterwards to com-
press the data into a sparse matrix in CSR storage format. Only the values
array needs to be computed, since the row pointer and column indices
have already been computed when building the sparsity on the host and
subsequently transferred to GPU memory. Memory for the local contri-
butions and the values array is only allocated on the GPU.

__global__ void __lma_to_csr(double *lmadata , // local matrix data

double *csrdata , // CSR values array

int *rowptr , // CSR row pointer

int *colidx , // CSR column idx

int *rowmap , // row map array

int rowmapdim , // row map arity

int *colmap , // column map array

int colmapdim , // column map arity

int nelems) {

int nentries_per_ele = rowmapdim * colmapdim;

int n = threadIdx.x + blockIdx.x * blockDim.x;

if (n >= nelems * nentries_per_ele) return;

int e = n / nentries_per_ele; // set element

int i = (n - e*nentries_per_ele) / rowmapdim; // local row

int j = (n - e*nentries_per_ele - i*colmapdim); // local column

// Compute position in values array

int offset = pos(rowmap[e*rowmapdim+i], colmap[e*colmapdim+j],

rowptr , colidx);

__atomic_add(csrdata + offset , lmadata[n]);

}

This structure is naturally extensible to matrix-free methods such as the
Local Matrix Approach, which has been demonstrated to be beneficial

84

for many problems on many-core architectures by Markall et al. [2012].
Instead of building a CSR structure using the kernel above, a custom im-
plementation of the sparse matrix-vector product is provided to be called
as a black-box routine by an iterative solver.

4.6.5 Solving a Linear System

PyOP2 provides a Solver which wraps the PETSc KSP Krylov solvers [Balay
et al., 2013, Chapter 4] which support various iterative methods such as
Conjugate Gradients (CG), Generalized Minimal Residual (GMRES), a sta-
bilized version of BiConjugate Gradient Squared (BiCGStab) among oth-
ers. The solvers are complemented with a range of preconditioners from
PETSc’s PC collection, which includes Jacobi, incomplete Cholesky and
LU decompositions as well as multigrid and fieldsplit preconditioners.

Solving a linear system of the matrix A assembled above and the right-
hand side vector b for a solution vector x is done with a call to the solve

method, where solver and preconditioner are chosen as gmres and ilu:

x = op2.Dat(nodes , dtype=np.float64)

solver = op2.Solver(ksp_type='gmres ', pc_type='ilu')

solver.solve(A, x, b)

4.6.6 GPU Linear Algebra

Linear algebra on the GPU with the CUDA backend uses the Cusp library
[Bell et al., 2014], which supports CG, GMRES and BiCGStab solvers and
Jacobi, Bridson approximate inverse and algebraic multigrid precondition-
ers. The interface to the user is the same as for the sequential and OpenMP
backends. An exception is raised if an unsupported solver or precondi-
tioner type is requested. A Cusp solver with the chosen parameters is
automatically generated when solve is called and subsequently cached.

4.6.7 Vector Operations

A Dat represents an opaque vector and as such supports the common
vector operations addition, subtraction, multiplication and division both
pointwise by another Dat or by a scalar, in which case the operation is

85

broadcast over all its values. In addition, the computation of inner prod-
ucts and reductions is supported. All these operations are implemented
in a backend-independent manner using parallel loops.

4.7 Distributed Parallel Computations with MPI

As illustrated in Figure 4.5, all PyOP2 backends support distributed paral-
lel computations with MPI, where the parallelism is abstracted and com-
munication is automatically managed. Sets and maps must be distributed
among the processors with partly overlapping partitions. These overlap
regions, called halos, are required to be able to compute over entities on
the partition boundaries and are kept up to date by automatically manag-
ing data exchange between neighbouring processors when needed. This
section introduces work partly presented by Mitchell [2013].

4.7.1 Local Numbering

The partition of each Set local to each process consists of entities owned by
the process and the halo, which are entities owned by other processes but
required to compute on the boundary of the owned entities. To efficiently
overlap communication and computation and avoid communication dur-
ing matrix assembly as described below, PyOP2 enforces a constraint on
the numbering of the local set entities of each partition, which are there-
fore partitioned into four contiguous sections. Figure 4.12 illustrates the
four sections for a mesh distributed among two processors. Each locally
stored Set entity belongs to one of these four sections:

Core Entities owned which can be processed without accessing halo data.

Owned Entities owned which need access to halo data when processed.

Exec halo Off-processor entities which are redundantly executed over be-
cause they touch owned entities.

Non-exec halo Off-processor entities which are not processed, but read
when computing the exec halo.

Data defined on the Set is stored contiguously per section, where local
Set entities must be numbered in order of section, with core entities first,
followed by owned, exec halo and non-exec halo. A good partitioning

86

processor 0

processor 1

co
re

o
w

n
ed

n
o

n
-

ex
ec

co
re

ex
ec

n
o

n
-

ex
ec

ex
ec

o
w

n
ed

Figure 4.12: A mesh distributed among two processors with the entities of each mesh
partition divided into core, owned, exec halo and non-exec halo. Matching halo
sections are highlighted in matching colours.

maximises the size of the core section and minimises halo regions, such
that the vast majority of local entities can be assumed in the core section.

4.7.2 Computation-communication Overlap

The ordering of Set entities into four sections allows for a very efficient
overlap of computation and communication. While the halo exchange is
in progress, core entities, which by construction do not access halo data,
can be processed entirely. Execution over the owned and exec halo regions
requires up to date halo data and can only start once the halo exchange
is completed. Depending on communication latency, bandwidth and the
size of the core section relative to the halo, the halo exchange is, in the best
case, complete before the computation on the core section has finished.

The entire process for all backends is given in the listing below:

halo_exchange_begin () # Initiate halo exchange

maybe_set_dat_dirty () # Mark Dats as modified

compute(itset.core_part) # Compute core region

halo_exchange_end () # Wait for halo exchange

compute(itset.owned_part) # Compute owned region

87

reduction_begin () # Initiate reductions

if needs_exec_halo: # Any indirect Dat not READ?

compute(itset.exec_part) # Compute exec halo region

reduction_end () # Wait for reductions

maybe_set_halo_update_needed () # Mark halos as out of date

Any reductions depend on data from the core and owned sections and
are initiated as soon as the owned section has been processed and execute
concurrently with computation on the exec halo. If no action is required
for any of the operations above, it returns immediately.

By dividing entities into sections according to their relation to the halo,
there is no need to check whether or not a given entity touches the halo
or not during computations on each section. This avoids branching in
kernels or wrapper code and allows launching separate GPU kernels for
execution of each section with the CUDA and OpenCL backends.

4.7.3 Halo exchange

Exchanging halo data is only required if the halo data is actually read,
which is the case for Dats used as arguments to parallel loops in READ or RW

mode. PyOP2 keeps track whether or not the halo region may have been
modified and marks them as out of date. This is the case for Dats used in
INC, WRITE or RW mode or when a Solver or a user requests access to the data.
A halo exchange is performed only for halos marked as out of date.

4.7.4 Distributed Assembly

For an MPI distributed matrix or vector, assembling owned entities at the
boundary can contribute to off-process degrees of freedom and vice versa.

There are different ways of accounting for these off-process contribu-
tions. PETSc supports insertion with local stashing and subsequent com-
munication of off-process matrix and vector entries, however its imple-
mentation is not thread safe. Concurrent insertion into PETSc MPI ma-
trices is thread safe if off-process insertions are not cached and concur-
rent writes to rows are avoided, which is done for the OpenMP backend
through colouring as described in Section 4.5.3.

PyOP2 therefore disables PETSc’s off-process insertion feature, which
saves the additional communication step to exchange off-processor ma-

88

trix entries when finalising the global assembly process. Instead, all off-
process entities which are part of the exec halo section described above are
redundantly computed over. Maintaining a larger halo, the non-exec halo
section, is required to perform the redundant computation. Halos grow
by about a factor two, however in practice this is still small compared to
the interior region of a partition. The main cost of halo exchange is the
latency, which is independent of the exchanged data volume.

4.8 Mixed Types

When solving linear systems of equations as they arise for instance in the
finite element method (FEM), one is often interested in coupled solutions of
more than one quantity. In fluid dynamics, a common example is solving
a coupled system of velocity and pressure as it occurs in some formula-
tions of the Navier-Stokes equations. PyOP2 naturally supports such use
cases by providing generalised block-structured data types, which mir-
ror the structure of coupled systems. These are a crucial prerequisite for
designing mixed function spaces in Firedrake, described in Section 5.2.

4.8.1 Mixed Set, DataSet, Map and Dat

PyOP2 provides a range of mixed types, lightweight containers which do
not own any data and are instantiated by combining the element elemen-
tary data types Set, DataSet, Map and Dat into a MixedSet, MixedDataSet, MixedMap
and MixedDat respectively. Mixed types provide the same attributes and
methods as their base types allow iteration over their constituent parts3.
This design allows mixed and non-mixed types to be used interchange-
ably and simplifies implementation by not having to special case code.

4.8.2 Block Sparsity and Mat

Sparsity patterns for coupled linear systems exhibit a characteristic block
structure, which PyOP2 exploits when declaring a Sparsity from pairs of
mixed maps. Such a sparsity is composed of elementary sparsities ar-
ranged in a square block structure with as many block rows and columns

3For consistency and convenience, base types yield themselves when iterated.

89

as there are components in the MixedDataSet forming its row and column
space. In the most general case a Sparsity is constructed as follows:

it = op2.Set (...) # Iteration set , not mixed

sr0 , sr1 = op2.Set (...), op2.Set (...) # Sets for row spaces

sc0 , sc1 = op2.Set (...), op2.Set (...) # Sets for column spaces

MixedMaps for the row and column spaces

mr = op2.MixedMap ([op2.Map(it, sr0 , ...), op2.Map(it, sr1 , ...)])

mc = op2.MixedMap ([op2.Map(it, sc0 , ...), op2.Map(it, sc1 , ...)])

MixedDataSets of dim 1 for the row and column spaces

dsr = op2.MixedDataSet ([sr0**1, sr1 **1])

dsc = op2.MixedDataSet ([sc0**1, sc1 **1])

Blocked sparsity

sparsity = op2.Sparsity ((dsr , dsc), [(mr, mc), ...])

The relationships of each component of the mixed maps and datasets to
the blocks of the Sparsity is shown in Figure 4.13.

0,0 0,1

1,0 1,1

Mapr,0

Mapc,1

Mapr,0

Mapc,0

Mapr,1

Mapc,0

Mapr,1

Mapc,1

DataSetc,0 DataSetc,1

DataSetr,0

DataSetr,1

Setit,0 Mapc,0
Mapc,1

Mapr,0

Mapr,1

Figure 4.13: The contribution of sets, maps and datasets to the blocked sparsity

Although not a separate type, a block sparsity is a container for the
sparsity objects forming each block, similar to the other mixed types de-
scribed above. Sparsity patterns for each block are computed separately
using the same code path described in Section 4.6.2 and the same validity
rules apply. A Mat defined on a block Sparsity inherits the block structure
and is implemented using a PETSc MATNEST [Balay et al., 2013, Section
3.1.3], where the nested submatrices are stored separately.

90

4.8.3 Mixed Assembly

Assembling a coupled system into a mixed vector or matrix is usually
done with a single parallel loop and kernel. The local iteration space as
seen by this kernel is a combination of local iteration spaces of all the sub-
blocks of the vector or matrix. PyOP2 ensures that indirectly accessed data
is gathered and scattered via the maps corresponding to each sub-block
and packed together into a contiguous vector to be passed to the kernel.
This combined local iteration space is, however, logically block structured
and PyOP2 takes care of assembling contributions from the local tensor
into the corresponding blocks of the MixedDat or Mat.

To orchestrate this computation, an unrolled loop over the two dimen-
sional block structure of the iteration space is generated, accumulating
contributions of each block into the corresponding submatrix as described
in Section 4.6.3. The same code path is used for assembling regular ele-
mentary vectors and matrices, where the iteration space only consists of
the (0, 0) block such that no special casing is necessary.

Consider the following example loop assembling a block matrix:

it, cells , nodes = op2.Set (...), op2.Set (...), op2.Set (...)

mds = op2.MixedDataSet ([nodes , cells])

mmap = op2.MixedMap ([op2.Map(it, nodes , 2, ...),

op2.Map(it, cells , 1, ...)])

mat = op2.Mat(op2.Sparsity(mds , mmap))

d = op2.MixedDat(mds)

op2.par_loop(kernel , it,

mat(op2.INC , (mmap[op2.i[0]], mmap[op2.i[1]])),

d(op2.READ , mmap))

The kernel for this par_loop assembles a 3× 3 local tensor and is passed
an input vector of length 3 for each iteration set element:

void kernel(double v[3][3] , double **d) {

for (int i = 0; i<3; i++)

for (int j = 0; j<3; j++)

v[i][j] += d[i][0] * d[j][0];

}

The top-left 2× 2 block of the local tensor is assembled into the (0, 0)
block of the matrix, the top-right 2× 1 block into (0, 1), the bottom-left 1×
block into (1, 0) and finally the bottom-right 1× 1 block into (1, 1). Figure
4.14 illustrates the assembly of the block Mat.

91

Figure 4.14: Assembling into the blocks of a global matrix A: block A0,0 uses maps ι1,0

and ι2,0, A0,1 uses ι1,0 and ι2,1, A1,0 uses ι1,1 and ι2,0 and finally A1,1 uses ι1,1

and ι2,1 for the row and column spaces respectively.

4.9 Comparison with OP2

PyOP2 shares fundamental concepts with OP2, described in Section 3.3,
however differs in several important design decisions. These lead to very
different implementations which do not share code. Among the shared
concepts are the description of the topology of an unstructured mesh with
sets and maps and the uniform execution of a kernel over an iteration
set. Both OP2 and PyOP2 support performance-portable computations on
different backends from a single source through code generation. While
PyOP2 allows the backend to be selected at runtime, an OP2 application is
compiled and linked for a particular backend. Switching the backend re-
quires invoking the appropriate code generator, compiling the application
and linking against backend-specific runtime support libraries.

Similarly, PyOP2 dynamically generates code at runtime by inspecting
objects and data structures, while OP2 relies on static analysis of an input
programme, which is transformed into a backend-specific implementa-
tion through source-to-source translation at compile time. All informa-
tion needed for code generation must be gleaned by parsing the user pro-
gramme. In practice, this analysis is limited to the parallel loop call itself,

92

since OP2’s custom translator, relying on regular expression matching and
string substitution, cannot reliably backtrack to variable declarations. Ac-
cess to declarations would either depend upon a more sophisticated anal-
ysis, capable of tracing variables from the point of declaration to the point
of use, or require to limit the control flow allowed in a user programme.
Even that is not sufficient to support the general case, where an argument
can be a variable only known at runtime.

A particular consequence of this limitation is the requirement to repeat
access descriptors for indirectly accessed arguments, explicitly specifying
the index into the map, since the map’s arity cannot be determined.

In the following, a parallel loop call for the adt_calc kernel in the Airfoil
example application, which is part of both the OP2 and PyOP2 distribu-
tions, is compared to highlight the differences. Airfoil is a finite volume
code operating on a quadrilateral mesh. The adt_calc kernel, executed over
cells, accesses p_x indirectly via the map pcell from cells to vertices of arity
four, and p_q and p_adt directly. Consider the OP2 parallel loop call:

op_par_loop(adt_calc ,"adt_calc",cells ,

op_arg_dat(p_x , 0,pcell , 2,"double",OP_READ),

op_arg_dat(p_x , 1,pcell , 2,"double",OP_READ),

op_arg_dat(p_x , 2,pcell , 2,"double",OP_READ),

op_arg_dat(p_x , 3,pcell , 2,"double",OP_READ),

op_arg_dat(p_q , -1,OP_ID , 4,"double",OP_READ),

op_arg_dat(p_adt ,-1,OP_ID , 1,"double",OP_WRITE));

Access descriptors for op_dat arguments are explicitly instantiated as an
op_arg_dat, which takes the op_dat, the index into the map, the map itself,
the size and data type of the op_dat and the access mode, where index and
map are -1 and OP_ID for direct arguments. The equivalent PyOP2 parallel
loop call shown below is much more compact. Access descriptors are
created directly from Dats, only passing the access mode and the map for
indirect access. Since PyOP2 can determine the arity from the map, there
is no need to explicitly specify an index, even though this is supported.
For most applications, the kernel accesses all associated entities, which is
the default PyOP2 behaviour for non-indexed maps. Similarly, the shape
and type of data are queried from the Dat and need not be repeated:

op2.par_loop(adt_calc , cells ,

p_x(op2.READ , pcell),

p_q(op2.READ),

p_adt(op2.WRITE))

93

Being embedded in Python, PyOP2 provides a significantly more com-
pact, clean, readable and expressive DSL syntax. More importantly, the
choice of host language and the runtime nature have enabled several de-
sign decisions and features that would not have been possible with OP2,
such as the backend dispatch, dynamic data structures, support for matri-
ces, linear algebra operations and mixed types. In particular the last three
are crucial prerequisites for applications such as finite element computa-
tions and extensively used by Firedrake, described in Chapter 5.

4.10 Conclusions

In this chapter, PyOP2 has been demonstrated to be a high-level versatile
abstraction for parallel computations on unstructured meshes, support-
ing a wide range of hardware architectures through a unified API. At
runtime, domain knowledge is exploited to generate efficient, problem-
specific, low-level code taylored to each platform. Applications built on
top of PyOP2 are therefore immediately portable and can execute on any
supported backend without requiring code changes.

Data storage, layout and transfer as well as parallel computations and
MPI communication of vector and matrix data are managed for the user
by PyOP2, whose data structures form suitable building blocks for higher
level constructs, encapsulating the topology of unstructured meshes and
the data defined on them. A Dat is a completely abstracted representation
of a vector, where the actual values may be stored in CPU or GPU memory,
depending on which backend computations are running on.

PyOP2’s conceptual abstraction is applicable to a variety of different
kinds of computations on unstructured meshes or fixed-degree graphs.
The support for sparse matrix assembly and linear algebra as well as
mixed problems make PyOP2 a suitable execution layer for a broad class
of scientific applications. In particular, these features are crucial to effec-
tively supporting finite element computations as demonstrated by Fire-
drake described in the next chapter.

94

Chapter 5

Firedrake - A Portable Finite
Element Framework

Firedrake is a high-level framework for solving linear and non-linear fi-
nite element problems described as variational forms on discrete function
spaces. Solving such a problem numerically involves a number of mathe-
matical operations such as formulating a variational problem, assembling
forms, manipulating functions, and solving the variational problem. Fire-
drake abstracts this process and provides high-level representations of
these mathematical operations in Python code, which are themselves effi-
ciently implemented as compositions of different, lower level abstractions
employed by Firedrake, as explained in this chapter.

The central abstraction is PyOP2, described in the previous chapter,
used as the parallel execution layer. Firedrake does not directly manipu-
late any field data. Instead, all computation and manipulation of data is
done exclusively via parallel loops (Section 4.1.3) and is therefore inher-
ently backend-independent and performance portable. PyOP2 also man-
ages storage, layout, transfer of data as well as any communication and
exchange of halo data between processes when running in parallel.

Management, distribution and renumbering of the unstructured mesh
topology and the solution of linear and non-linear systems is handled by
the PETSc abstraction, introduced in Section 3.1.1, which is partly lever-
aged via PyOP2’s linear algebra interface described in Section 4.6. The
mesh and non-linear solver interfaces are implemented in Firedrake.

The highly sucessful UFL abstraction (Section 3.2.2) is used for the de-

95

scription of variational forms. Firedrake internally employs a customised
version of the FEniCS form compiler FFC (Section 3.2.3) for compiling
forms and FIAT (Section 3.2.4) for tabulating local basis functions.

In its design, Firedrake follows a clear separation of concerns. Most
operations are closed over their abstractions, which means they return
Firedrake objects, unless they are supposed to lower the abstraction, in
which case they return a first class object of the layer below.

The API exposed by Firedrake is intentionally compatible to DOLFIN
introduced in Section 3.2.1, with a few exceptions, such as strong bound-
ary conditions. If they wish however, users may extract the underlying
PyOP2, PETSc or UFL objects and inspect or manipulate those directly.

As a consequence of these design principles, Firedrake is purley a sys-
tem for reasoning about variational forms with a very compact and main-
tainable code base, which contains no parallel code, since all parallelism
and communication is handled by either PyOP2 or PETSc.

This chapter begins by introducing concepts and constructs fundamen-
tal to Firedrake and the definition of variational problems in Section 5.1.
Details on the treatment of mixed function spaces are given in Section 5.2.
Assembling expressions and variational forms is described in Sections 5.3
and 5.4 and the application of strong boundary conditions in Section 5.5.
Solving linear and non-linear systems of equations is detailed in Section
5.6 and a comparison to the DOLFIN/FEniCS tool chain is presented in
Section 5.7, before the chapter concludes with Section 5.8.

5.1 Concepts and Core Constructs

To solve a variational problem, starting from the strong form of a par-
tial differential equation, a weak variational form is derived by choosing
suitable discrete function spaces for test and trial functions and any coef-
ficients present in the form as described in Section 2.1.

These discrete function spaces are defined on a discretised domain rep-
resented by a mesh and characterised by finite element basis functions of a
certain family and degree. Firedrake represents coefficients and unknown
solutions as functions defined on these function spaces. A diagram of the
Firedrake core classes Mesh, FunctionSpace and Function and their associated
PyOP2, PETSc and UFL objects is given in Figure 5.1.

96

firedrake.Function coordinates

pyop2.Set interior facets

pyop2.Set exterior facets

pyop2.Set cells

PETSc.DMPlex topology

Mesh

firedrake.Mesh mesh

pyop2.Map interior facet - node

pyop2.Map exterior facet - node

pyop2.Map cell - node

pyop2.DataSet dofs

pyop2.Set nodes

ufl.FiniteElement element

FunctionSpace

firedrake.FunctionSpace fs

pyop2.Dat data

Function (ufl.Coefficient)

Figure 5.1: Firedrake core classes and their associated PyOP2, PETSc and UFL objects

5.1.1 Functions

In finite element terminology, a field is data defined on a set of degrees
of freedom (DOFs), which is exactly the representation in a PyOP2 Dat,
described in Section 4.1.2. Firedrake therefore uses Dats to store the values
of fields, represented as a Function. When a Function is created, Firedrake
instructs PyOP2 to allocate a new Dat on the function’s DOF DataSet.

This choice exemplifies two of Firedrake’s design principles. The first
is the principle of single responsibility: functions are the only objects in
Firedrake that carry field data and all fields are functions. The other is
the clear separation of abstractions: PyOP2 is used as the portable com-
putation layer and responsible for all data storage. As far as Firedrake is
concerned, a Dat is a fully abstracted, distributed vector, whose data might
live in CPU or GPU memory, depending on the chosen PyOP2 backend.

5.1.2 Function Spaces

A function is defined on a function space, which defines the DOFs and
their relationship to the mesh topology. On a given mesh, a function space
is characterised by a family and degree of finite element basis functions.

97

Upon creation of a function space, Firedrake obtains the number and
distribution of local DOFs on the finite element of given family and degree
from FIAT, described in Section 3.2.4. This information is used to define
the Set of global DOFs and a global numbering of entities conforming to
the PyOP2 numbering requirements for distributed parallel computations,
described in Section 4.7. When running in parallel, this includes the def-
inition of halo regions. Global numberings are also computed for DOFs
on exterior and interior facets if required. Firedrake uses the renumbering
support of PETSc’s DMPlex module for distributed unstructured meshes
[Balay et al., 2013, Chapter 17] to compute the global numbering.

PyOP2 maps, defining the connectivity to the mesh topology as shown
in Figure 5.1, are created from these numberings as required by assembly
computations detailed in Section 5.4. Since a function space of a given
family and degree is unique and the computation of the numbering ex-
pensive, function spaces are only created once and cached on the mesh.

Firedrake provides a FunctionSpace for function spaces with scalar de-
grees of freedom, VectorFunctionSpace for vector- and TensorFunctionSpace for
tensor-valued degrees of freedom, such as velocity or diffusivity.

5.1.3 Meshes

A mesh representing a discretised domain defines the abstract topology,
that is how mesh entities such as cells, edges, vertices and facets are con-
nected. The concrete geometry is given by the coordinates of vertices in
2D or 3D space. In Firedrake, the topology is described by sets of entities
and maps between them using PyOP2 as described in Section 4.1.1.

Geometric information is stored as a Function for the coordinate field
defined on a Lagrange vector function space of degree one, computed as
described above. The coordinate field uses the same conforming global
numbering, which implicitly defines the connectivity between cells and
vertices of the mesh, so that there is no need to store this information
separately. The only data associated with the mesh is its DMPlex, the
coordinate Function, a Set of cells and data on exterior and interior facets.

Unlike many finite element frameworks, the coordinates are not treated
specially in any way. Instead, coordinates are a Function like any other and
can be reasoned about and manipulated in the same way. For instance, it

98

is straightforward to scale, rotate or otherwise transform the mesh simply
by performing a computation on the coordinate Function.

When running in parallel with MPI, Firedrake takes care of decom-
posing the mesh among processors transparently, using PETSc’s DMPlex
module for distributed unstructured meshes [Balay et al., 2013, Chapter
17]. Firedrake delegates reading meshes in Gmsh [Geuzaine and Remacle,
2009], CGNS [Poirier et al., 1998] and EXODUS [Mills-Curran et al., 1988]
format to DMPlex and adds support for the Triangle [Shewchuk, 1996]
format. A number of utility mesh classes are provided for uniform dis-
cretisations of standard domains such as intervals in 1D, rectangles and
circles in 2D and cubes and spheres in 3D.

Immersed manifolds

Firedrake also supports solving problems on orientable immersed man-
ifolds. These are meshes in which the entities are immersed in a higher
dimensional space such as the surface of a sphere in 3D [Rognes et al.,
2013]. In this case, the geometric dimension of the coordinate field is not
the same as the topological dimension of the mesh entities.

Semi-structured extruded meshes

In order to support the solution of PDEs on high-aspect ratio domains,
such as in the ocean or atmosphere, the numerics dictate that the “short”
dimension should be structured. Firedrake supports solving such prob-
lems on extruded meshes, which are built by extruding an unstructured
base mesh for a given number of layers to form this structured “short”
dimension. Non-uniform layer heights can be computed using a PyOP2
kernel and radial extrusion is also supported.

5.1.4 Expressing Variational Problems

Firedrake uses the high-level language UFL (Section 3.2.2) to describe vari-
ational problems. The Firedrake classes Mesh, FunctionSpace and Function pro-
vide the same interface to the user as their DOLFIN equivalents (Section
3.2.1), albeit with an entirely different implementation.

99

A first variational form

As an example, consider the identity equation on a unit square Ω:

u = f on Ω (5.1)

Test and trial functions on a function space using piecewise linear poly-
nomials on a unit square mesh are obtained as follows:

mesh = UnitSquareMesh (10, 10)

V = FunctionSpace(mesh , "CG", 1)

u = TrialFunction(V)

v = TestFunction(V)

It is worth noting that, despite their name, test and trial functions do
not represent a Firedrake Function, but are purely symbolic objects only
used in the context of a UFL variational form.

A function to hold the right hand side f is populated with the x com-
ponent of the coordinate field:

f = Function(V).interpolate(Expression('x[0]'))

The variational formulation of (5.1) is: find u ∈ V such that∫
Ω

uv dx =
∫

Ω
f v dx ∀v ∈ V (5.2)

and is defined in UFL as

a = u * v * dx

L = f * v * dx

where the measure dx indicates that the integration should be carried out
over the cells of the mesh. UFL can also express integrals over the bound-
ary of the domain (ds) and the interior facets of the domain (dS).

As described in more detail in Section 5.6, the resulting variational prob-
lem is solved for a function x as follows:

x = Function(V)

solve(a == L, x)

Incorporating boundary conditions

Boundary conditions enter the variational problem in one of two ways.
Natural (often termed Neumann or weak) boundary conditions, which pre-

100

scribe values of the derivative of the solution, are incorporated into the
variational form. Essential (often termed Dirichlet or strong) boundary con-
ditions, which prescribe values of the solution, become prescriptions on
the function space. In Firedrake, the former are naturally expressed as
part of the formulation of the variational problem, the latter are repre-
sented by the class DirichletBC and are applied when solving the varia-
tional problem, as described in Section 5.5. A strong boundary condition
is imposed in a function space, setting degrees of freedom on a given
subdomain, defined by the mesh generator, to a given value:

bc = DirichletBC(V, value , subdomain_id)

Strong boundary conditions are prescribed by passing a list of boundary
condition objects to the solve call:

solve(a == L, bcs=[bc])

Alternatively, they can be given when assembling a form into a tensor:

A = assemble(a, bcs=[bc])

b = assemble(L, bcs=[bc])

Finally, boundary conditions can also be explicitly applied to a tensor:

bc.apply(A)

bc.apply(b)

It is important to note that the method Firedrake utilises internally for
applying strong boundary conditions described in Section 5.5 does not de-
stroy the symmetry of the linear operator. If the system without boundary
conditions is symmetric, it will continue to be so after the application of
any boundary conditions.

5.2 Mixed Function Spaces

Many finite element problems involve some form of coupling between
different fields, such as between the pressure and velocity in a fluid flow.
Such problems are therefore commonly modeled with mixed function
spaces, which are combinations of the function spaces of each of the fields
and treated as if they were stacked on top of each other. The resulting cou-
pled systems exhibit a block structure, which is readily expressible using
PyOP2 mixed types introduced in Section 4.8.

101

5.2.1 Mixed Formulation for the Poisson Equation

Consider the Poisson equation ∇2u = − f using a mixed formulation on
two coupled fields [Rognes, 2012]. Introducing the negative flux σ = ∇u
as an auxiliary vector-valued variable results in the following PDE on a
domain Ω with boundary Γ = ΓD ∪ ΓN

σ−∇u = 0 on Ω ∇ · σ = − f on Ω (5.3)

u = u0 on ΓD σ · n = g on ΓN (5.4)

for some known functions f and g. The solution to this equation will be
some functions u ∈ V and σ ∈ Σ for some suitable function spaces V and
Σ. Multiply by arbitrary test functions τ ∈ V and ν ∈ Σ, integrate over
the domain and then integrate by parts to obtain a weak formulation of
the variational problem: find σ ∈ Σ and ν ∈ V such that:

∫
Ω
(σ · τ +∇ · τ u) dx =

∫
Γ

τ · n u ds ∀ τ ∈ Σ, (5.5)∫
Ω
∇ · σv dx = −

∫
Ω

f v dx ∀ v ∈ V. (5.6)

The flux boundary condition σ · n = g becomes an essential boundary
condition to be enforced on the function space, while the boundary con-
dition u = u0 turns into a natural boundary condition which enters into
the variational form, such that the variational problem can be written as:
find (σ, u) ∈ Σg ×V such that

a((σ, u), (τ, v)) = L((τ, v)) ∀ (τ, v) ∈ Σ0 ×V (5.7)

with the variational forms a and L defined as

a((σ, u), (τ, v)) =
∫

Ω
σ · τ +∇ · τ u +∇ · σ v dx (5.8)

L((τ, v)) = −
∫

Ω
f v dx +

∫
ΓD

u0τ · n ds (5.9)

The essential boundary condition is reflected in the function spaces
Σg = {τ ∈ H(div) such that τ · n|ΓN = g} and V = L2(Ω).

A stable combination of discrete function spaces Σh ⊂ Σ and Vh ⊂ V to

102

Listing 5.1: Mixed Poisson problem formulated in Firedrake.

V = FunctionSpace(mesh , "BDM", 1)
Q = FunctionSpace(mesh , "DG", 0)
W = V * Q

sigma , u = TrialFunctions(W)
tau , v = TestFunctions(W)
f = Function(Q)

a = (dot(sigma , tau) + div(tau)*u + div(sigma)*v)*dx
L = - f*v*dx

form a mixed function space Σh × Vh is Brezzi-Douglas-Marini elements
[Brezzi et al., 1985] of polynomial order k for Σh and discontinuous ele-
ments of polynomial order k − 1 for Vh. Listing 5.1 shows this problem
formulated in Firedrake1 for k = 1 and u0 = 0.

5.2.2 Mixed Elements, Test and Trial Functions in UFL

The mixed function space W is obtained by combining the function spaces
V and Q using the * operator, where V is the first and Q the second sub-
space in W. Test and trial functions for these subspaces are extracted via
TrialFunctions and TestFunctions, which return an ordered tuple of indices
into the mixed test and trial functions. Note that this is fundamentally
different from creating separate test and trial functions on the spaces V

and Q, which would have no connection to the mixed space W.

The test and trial spaces on W have dimension 3, where index 0 and 1 re-
fer to the Brezzi-Douglas-Marini space, which is a vector valued function
space of dimension two, and index 2 refers to the scalar valued discontin-
uous Galerkin space. The subspaces sigma and u are represented as shown
in Figure 5.2 and 5.3 and tau and v analogous but for the test function.

Maintaining the relationship to the parent mixed space allows UFL to
infer the full shape of the form, which is given by the mixed test and trial
spaces, even though only the subspace arguments are used in defining
the form. The index is used keep track of the position these subspace
arguments belong to in the form in whichever expression they are used.

Consider the linear form L in Listing 5.1, which contains the coefficient

1This problem is implemented as a demo in DOLFIN and Firedrake.

103

http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/mixed-poisson/python/documentation.html
http://firedrakeproject.org/demos/poisson_mixed.py.html

sigma

ListTensor

Indexed

0

Indexed

1

0

index

TrialFunction(W)

arg

1

indexarg

Figure 5.2: UFL expression tree for σ

u

Indexed

2

index

TrialFunction(W)

arg

Figure 5.3: UFL expression tree for u

f defined on Q and the test function v defined on the second subspace of W.
This information allows UFL to infer that this form is defined on a mixed
space, but there is only a contribution to its second subspace. Similar
information can be inferred for the bilinear form a shown in Figure 5.4.
Substituting the representations for σ, τ, u and v as shown in Figures 5.2
and 5.3 gives the final expression tree for a shown in Figure 5.5.

*

v div

u

dot

sigma

tau

+

+

*

div

Figure 5.4: Simplified UFL expression tree for the mixed Poisson formulation

5.2.3 Mixed Systems

The bilinear form a corresponds to a linear operator with a block structure
given by the contributions from each component of the mixed trial space

104

*

Indexeddiv

Indexed

0TrialFunction(W)

2

TestFunction(W)

Indexed

1

dot

ListTensor ListTensor

IndexedIndexed

+

+

*

Indexed div

Figure 5.5: UFL expression tree for the mixed Poisson formulation

(σ, u) and test space (τ, v):(
a(σ, τ) a(u, τ)

a(σ, v) a(u, v)

)
. (5.10)

Identifying each term in a results in the system(
〈σ, τ〉 〈div(τ), u〉

〈div(σ), v〉 0

)
(5.11)

where there is no contribution to the lower right block.

As described in Section 4.8.3, assembling such a coupled monolithic
system involves picking apart the contributions of the local assembly ker-
nel to each of the blocks of the matrix and using the appropriate maps to
determine the rows and columns where contributions need to be added
to the matrix block. This has a number of drawbacks with respect to per-
formance. The local assembly kernels require tabulated basis functions
for multiple function spaces with large blocks of zeros for the regions
where there is no contribution from that function space. Keeping these in
on-chip resources such as registers leads to large local working set sizes,

105

which limit the number of concurrently active threads in particular on
many-core architectures, as described in Section 2.2.5.

Ølgaard and Wells [2010] have developed optimisations for the quadra-
ture representation of FFC, one of which is the elimination of zero columns
from the basis function tables by introducing an indirection map for non-
zero columns. This strategy is not employed by the COFFEE abstract
syntax tree optimiser [Luporini et al., 2014] since it destroys the struc-
ture of the quadrature loop nest and thereby prevents vectorisation. Such
transformations are furthermore incompatible with the concept of PyOP2
iteration spaces detailed in Section 4.2.4.

5.2.4 Splitting Mixed Forms

To mitigate the mentioned performance issues for assembling mixed forms,
Firedrake pre-splits forms before passing them to FFC for compilation,
obtaining a separate kernel for each of the blocks in (5.11), which is as-
sembled in a separate parallel loop. This keeps working set sizes smaller
since kernels only contain basis functions for the pair of subspaces used
and the need for padding tabulated basis functions with zeros is avoided.

Obtaining contributions to the individual blocks from (5.11) involves
iterating the outer product spanned by the vectors of test and trial sub-
spaces and extracting the contribution to the mixed form a for each com-
bination of subspaces (σ, τ), (u, τ), (σ, v) and (u, v). Splitting a is imple-
mented as a transformation of its UFL expression tree shown in Figure 5.5.
A separate pass is made for each combination of test and trial subspaces,
where all other subspaces are disabled by setting them to zero.

As described above, the mixed trial and test functions are represented as
the three component vectors (σ0, σ1, u) and (τ0, τ1, v) respectively. Trans-
forming the expression tree requires the retention of this shape such that
all indices into the mixed trial and test functions shown in Figure 5.5 re-
main valid and setting the non-participating components to zero:(

(σ0, σ1, 0), (τ0, τ1, 0) (0, 0, u), (τ0, τ1, 0)
(σ0, σ1, 0), (0, 0, v) (0, 0, u), (0, 0, v)

)
. (5.12)

When visiting the expression tree, those argument nodes representing test
and trial functions on a mixed function space are replaced with a vector of

106

TestFunction(W)

ListTensor

Indexed

0

Indexed

1

0

2

0

index

TestFunction(V)

arg

1

indexarg

TrialFunction(W)

ListTensor

0

0

0

1

TrialFunction(Q)

2

Figure 5.6: UFL expressions replacing the mixed test (left) and trial (right) function

the same value shape as the mixed function space. The argument selected
for test and trial subspace in the current pass is inserted in the correspond-
ing positions in the vector and all other components are set to UFL’s zero
value as shown in (5.12). Note that it is crucial to build the arguments on
the individual subspaces and not extract them from the mixed arguments,
such that the resulting form is not mixed and has the shape given by the
subspaces and does not retain the shape given by the mixed space.

In the following, consider the pass for block (0, 1), where only τ is
selected for the test and u for the trial space. The mixed test and trial
functions are replaced by the expressions in Figure 5.6. Since the BDM
space is vector valued, two components in the vector replacing the mixed
test and trial function are non-zero and zero respectively in this pass.

5.2.5 Simplifying Forms

The UFL expression tree for the bilinear form a with mixed arguments
replaced by the expressions from Figure 5.6 is displayed in Figure 5.7.
This representation seems rather more complicated than the original ex-
pression tree from Figure 5.5. However, observe that most nodes in the
tree are indexed expressions of the test and trial functions, many of which
now point to subspaces that have been replaced by zero. UFL has been
equipped with additional simplification rules to eliminate expressions that
evaluate to zero when building the modified expression tree.

When selecting a component of a vector valued expression (a ListTensor

node in the tree) with a fixed index, the indexing operation is eliminated

107

*

Indexed (v)div

Indexed

0ListTensor

2

ListTensor

Indexed

1

dot

ListTensor (sigma) ListTensor (tau)

IndexedIndexed

+

+

*

Indexed (u) div

0

0

0

1

TrialFunction(Q)

2

Indexed

0

Indexed

1

0

2

0

index

TestFunction(V)

arg

1

indexarg

Figure 5.7: UFL expression tree for block (0, 1) of a with mixed test/trial spaces replaced

*

0 div

0

0

0

dot

ListTensor

ListTensor

Indexed

1 TestFunction(V)

Indexed

+

+

*

div TrialFunction(Q)

Figure 5.8: UFL expression tree for block (0, 1) of a with indexing simplification applied

108

and replaced by the selected scalar expression. This means that selecting
a subspace which has been set to zero yields zero instead of an indexing
operation, which enables further UFL simplifications. Applying this rule
transforms the tree from Figure 5.7 into the tree shown in Figure 5.8.

*

0 div

0

0

0

0

Indexed

1 TestFunction(V)

Indexed

ListTensor

+

+

*

ListTensor

div TrialFunction(Q)

Figure 5.9: UFL expression tree for block (0, 1) of a with inner product simplification ap-
plied

The other simplification rule that has been added eliminates an inner
product of two vector valued expressions (ListTensor nodes) and replaces it
by zero if for each matching pair of components either component is zero.
This rule is applicable to the dot product node in Figure 5.8, simplifying
the tree further to what is shown in Figure 5.9.

Existing UFL simplification rules for reducing products to zero where
one factor is zero and replacing sums with a zero summand by the subtree
of the other summand allow simplifying the expression tree from Figure
5.9 further to the final representation for the (u, τ) block in Figure 5.11.

In a similar way, these new simplification rules enable UFL to simplify
the forms for the other blocks from (5.12) as shown in Figure 5.10 for
the (σ, τ) and Figure 5.12 for the (σ, v) block. Most importantly, (u, v) is
reduced to zero such that Firedrake need not pass this form to FFC.

However, there are cases where these rules are not sufficient to detect
that a form reduces to zero at UFL level and this only becomes appar-
ent after further preprocessing and analysis by the form compiler. Even

109

Indexed

TrialFunction(V) 10

Indexed

TestFunction(V)

ListTensor

Indexed

ListTensor

Indexed

dot

Figure 5.10: UFL expression tree for the (σ, τ) block of the mixed Poisson formulation

ListTensor

Indexed Indexed

TestFunction(V) 10

*

TrialFunction(Q) div

Figure 5.11: UFL expression tree for the
(u, τ) block of the mixed Pois-
son formulation

ListTensor

Indexed Indexed

TestFunction(Q)

TrialFunction(V)0 1

*

div

Figure 5.12: UFL expression tree for the
(σ, v) block of the mixed Pois-
son formulation

though these forms do incur the FFC compilation cost, Firedrake detects
empty forms and does not launch a parallel loop to assemble them.

5.3 Assembling Expressions

In a finite element context, fields are functions on the mesh, and Fire-
drake allows them to be manipulated like mathematical functions. From
a computational perspective, manipulations of field data are operations on
potentially large and, when running in parallel, distributed vectors. In ob-
ject oriented libraries, complex vector expressions can be formulated suc-
cinctly using overloaded operators on the vector types. However, the short
circuit evaluation of these operators leads to the creation of potentially
large numbers of temporaries for complex expressions. Not only does this
consume extra memory but more importantly also requires reading and
writing full length vectors many times, losing temporal locality of compu-
tations and thereby limiting the achievable performance. A C++ metapro-
gramming technique known as expression templates [Pflaum, 2001] has
been developed to efficiently evaluate such expressions at compile time.

110

5.3.1 Expression Compiler

Firedrake provides high level operations on functions with overloaded op-
erators, which form an expression tree similar to that of a form, described
in Section 5.2, instead of being immediately evaluated. Such an expres-
sion is evaluated only when assigned to a result function, at which point
an expression compiler is invoked to translate the expression into a kernel
suitable for efficient execution by a single PyOP2 parallel loop.

The expression compiler is first of all responsible for verifying that an
expression is valid. For an expression to be valid, the left and right hand
sides of the final assignment need to be “compatible”, which means that
one of two conditions is fulfilled. Either all functions in the right hand side
expression are defined on the same function space as the left hand side
function, or, if the left hand side function is defined on a mixed function
space, the right hand side expression only contains functions defined on
indexed subspaces of the mixed function spaces. The latter condition is
required such that the expression compiler can determine which part of
the mixed function the expression needs to be assigned to.

Note that the parallel loop to evaluate an expression is always a direct
loop. In the case of the left hand side being defined on a mixed function
space, the expression needs to be split into its individual subspaces, since
a parallel loop cannot execute over an iteration set that is mixed. Splitting
the expression is also required as the right hand side expression may be
defined only on a subspace of the left hand side function.

Consider functions f and g defined on a mixed function space W and
functions h0 and h1 defined on the two subspaces of W:

V = VectorFunctionSpace(mesh , 'CG', 2)

Q = FunctionSpace(mesh , 'CG', 1)

W = V * Q

f = Function(W)

g = Function(W)

h0 = Function(W[0])

h1 = Function(W[1])

For the simplest and most common case, where the right hand side
expression is simply a function defined on the same function space as
the left hand side function, the expression compiler is bypassed and the
operation is directly expressed as a PyOP2 operation on the Dat underlying

111

the function. This is the case for assignment, addition and subtraction of
a function or scalar and multiplication or division by a scalar as shown in
the following with the PyOP2 operation given in the right column:

f.assign(g) # Assignment -> g.dat.copy(f.dat)

f += g # Addition of a function -> f.dat += g.dat

f += 1.0 # Addition of a scalar -> f.dat += 1.0

f -= g # Subtraction of a function -> f.dat -= g.dat

f -= 1.0 # Subtraction of a scalar -> f.dat -= 1.0

f *= 2.0 # Multiplication by a scalar -> f.dat *= 2.0

f /= 2.0 # Division by a scalar -> f.dat /= 2.0

Since f is defined on a mixed function space, the operation is transparently
applied to both components of the MixedDat underlying the function f.

5.3.2 Expression Splitting

The expression splitter is conceptually similar to the form splitter de-
scribed in Section 5.2.4 and also implemented as a UFL tree visitor. Un-
like the form splitter however, which splits arguments by making multiple
passes over the form and setting components of the mixed function space
to zero, expressions are split at the level of coefficients and only a single
pass is needed.

Before visiting the tree, the function space of the left hand side function
is recorded. When a function node is visited, it is split if defined on the
same function space and replaced by the vector of sub functions. If de-
fined on an indexed function space, a vector is returned which contains
the sub function for the indexed component and zero for all other com-
ponents. All the operators are reconstructed by distributing them over
the components of this vector. In the case of a zero operand this means
the operator is replaced by zero in the case of a product and by the other
summand in the case of a sum by applying standard UFL simplification
rules as described in 5.2.5.

Consider the following assignment of an expression of h1, defined on a
subspace of W, to f, defined on the entire mixed space W:

f.assign (2*h1)

which is represented by the expression tree shown in the left of Figure
5.13. Splitting this expression results in the trees shown in the centre

112

Assign

f *

2 h1

Assign

f[0] 0

Assign

f[1] *

2 h1

Figure 5.13: Expression (left) split into a first (centre) and second (right) component

and right of Figure 5.13 respectively. The contribution from h1 is only
assigned to the second component of f, whereas the first component is set
to zero since there is no contribution from the right hand side. The same
expression with addition instead of assignment

f += 2*h1

results in the same expression tree with an IAdd instead of an Assign as the
root note. As a consequence, the split expression for the first component
is discarded since it amounts to the addition of zero.

5.3.3 Expression Code Generation and Evaluation

Each of the split expressions, which is a single one if the function space
of the left hand side of the original expression was not a mixed function
space, is subsequently visited a second time to build the list of arguments
for the PyOP2 parallel loop call to evaluate the expression. In this second
visit, the expression tree is transformed into a COFFEE abstract syntax
tree (AST), from which the expression kernel is initialised. The kernel for
the expression tree given at the right of Figure 5.13 is given below:

void expression (double* fn_0 , double* fn_1) {

for (int dim = 0; dim < 1; ++dim)

fn_0 [0] = 2 * fn_1 [0];

}

This kernel is then executed in a direct parallel loop over the set of DOFs
of function space Q, with the first component of the MixedDat underlying f

used in WRITE and the Dat underlying h1 in READ access mode.

113

5.4 Assembling Forms

Solving a linear or non-linear variational problem as described in Sections
5.6.2 and 5.6.1 requires the assembly of either a linear system of equations
which can be solved using a linear solver, or the Jacobian and residual
form for evaluation by a non-linear solver. In Firedrake, the assemble func-
tion is the unified interface used to assemble a form into a global tensor.
This function is called in a number of different contexts, either explicitly
by the user to obtain a pre-assembled system which is solved as described
in Section 5.6.4, or implicitly, when solving a variational problem.

Conceptually, the assembly operation maps out the local evaluation of
integrals defined by the form over all mesh entities given by the integral’s
measure and gathers the results into a global tensor. Firedrake formulates
this operation in terms of a PyOP2 parallel loop over those mesh entities
as described in Section 4.1.3 with a kernel produced by the FEniCS form
compiler FFC introduced in Section 3.2.3.

The result of the assembly operation depends on the rank of the form
being assembled, that is the number of unknown argument functions. For
a bilinear form of rank two with both a test and trial function, a rank
two tensor, that is a sparse matrix, is assembled. Similarly, a rank one
form with only a test function yields a vector, that is a tensor of rank one,
whereas a form of rank zero that contains neither test nor trial function
and is commonly called a functional, produces a scalar result.

Assembling a form in Firedrake involves the following steps:

1. Split the form as described in Section 5.2.4 and compile each block
with FFC to obtain a list of kernels, one for each integral in each
block of the form (Section 5.4.1).

2. Use the form rank to determine the kind of tensor to assemble and
initialise the output tensor (Section 5.4.2).

3. Build the form-specific list of arguments for the PyOP2 parallel loop
call performing the local assembly computation from the arguments
and coefficients of the form (Section 5.4.3).

114

5.4.1 Assembly Kernels

A UFL form may contain one or more integrals over the cells, the interior
or the exterior facets of the mesh. Each of these integrals corresponds
to a local assembly kernel performing the numerical quadrature. After
splitting the form as described in Section 5.2.4, each resulting non-zero
block is compiled by FFC to obtain an abstract syntax tree used to initialise
a PyOP2 kernel. As a side effect FFC also preprocesses the form, which
gives Firedrake access to a form_data object containing various metadata
about the form, such as the rank, the arguments, the coefficients and the
integrals used in the form.

Since calling FFC is a potentially very costly operation, Firedrake avoids
repeatedly compiling the same form by caching the produced kernels in
memory and on disk, keyed on the unique signature of the form.

5.4.2 Assembling Matrices, Vectors and Functionals

On a finite element level, a matrix is a linear operator between two func-
tion spaces, which are used in a combination of cell and facet integrals
and define the sparsity pattern of the matrix. The finite element abstrac-
tion can be directly expressed in terms of PyOP2 constructs: As described
in Section 4.6, a matrix in PyOP2 terms is a linear operator mapping be-
tween two datasets, whose sparsity pattern is built from one or several
pairs of maps for the row and column spaces of the matrix respectively.

For a rank two form, Firedrake builds a PyOP2 Mat to assemble into,
which is defined on a Sparsity as described in Section 4.1.2. The row and
column spaces of the matrix are defined by test and trial function spaces
of the form, which are available as part of the form data. The datasets
defining the row and column space of the matrix as well as the map pairs
for each integral are obtained from the test and trial function spaces.

A pair of maps according to the integral’s domain type is built from
the test and trial spaces for each integral in the form and added to the
sparsity pattern. For an integral over cells, the map from cells to degrees
of freedom is extracted from the function spaces and similarly for integrals
over exterior or interior facets. The sparsity is used to initialise a new
matrix, whose row and column space are given by the degree of freedom
datasets of the test and trial space. The result tensor is a Matrix object.

115

For a linear form, Firedrake creates a new Function defined on the test
space of the form and returns the underlying Dat as the result tensor.

For a functional, Firedrake assembles into a PyOP2 Global and returns
its scalar data value as the result.

5.4.3 Parallel Loops for Local Assembly Computations

Having initialised the global tensor to assemble into, Firedrake hands off
the local assembly computation to PyOP2, launching a parallel loop for
each of the kernels compiled from the form. These parallel loop calls, as
described in 4.1.3, require the kernel to execute, the iteration set to execute
over and access descriptors matching the kernel arguments, defining how
data is to be passed to the kernel. The first two arguments to an FFC ker-
nel, which are always present, are the local tensor that is being computed
and the coordinates of the vertices of the current cell or facet. Any further
arguments are coefficients used in the form.

The iteration set for a local assembly operation is, depending on the
domain type, the cells, exterior or interior facets of the mesh respectively,
which is extracted from the function space of the test function for bilinear
and linear forms. For constant functionals, which do not contain a func-
tion, Firedrake attaches the coordinate field as domain data to the integral
measure, where the mesh can be extracted from, assuming a single mesh.

An access descriptor for the output tensor contains the access mode
and the map, in the case of a linear form, or pair of maps, in the case
of a bilinear form, used for the indirect access. The access mode for the
output tensor is INC, such that PyOP2 deals with write contention from
accumulating contributions from any cell sharing a degree of freedom. As
explained previously, the map to be used is determined from the domain
type of the integral corresponding to the kernel being assembled. The
appropriate pair of maps for a bilinear form is obtained from the test and
trial function spaces, the map for a linear form from the test function
space. Since functionals reduce into a scalar, no indirection and therefore
no map is required.

The remaining access descriptors are built from the coordinate function
of the mesh and any coefficients present in the form obtained from its
form data. All these arguments are read-only and indirectly accessed via

116

a map from cells or facets to DOFs, obtained from the function space of
the coefficient. The algorithm is outlined in Listing 2. As described in
Section 5.5.1, matrix assembly is delayed until the point where the final
set of boundary conditions is known. Assembly is therefore implemented
as a callback function taking the boundary conditions as an argument.

Listing 2 thunk (bcs): Callback function to assemble a matrix

for kernel in kernels
(1) Determine iteration set and maps based on domain type:
Maps are modified according to the boundary conditions (Section 5.5.1)
if domain type is “cell”

iteration set = cell set
maps = cell→ node map (bcs) for test / trial function

elif domain type is “exterior facets”
iteration set = exterior facet set
maps = exterior facet→ node map (bcs) for test / trial function

elif domain type is “interior facets”
iteration set = interior facet set
maps = interior facet→ node map (bcs) for test / trial function

(2) Build list of arguments that are always present
arguments = [kernel, iteration set, tensor (INC, maps)]
arguments +

= coordinates Dat (READ, cell→ node map)
(3) Add arguments for form coefficients
for coefficient in form coefficients

arguments +
= coefficient Dat (READ, cell→ DOF map)

call PyOP2 parallel loop (arguments)

5.5 Imposing Dirichlet Boundary Conditions

Essential boundary conditions, also referred to as Dirichlet or strong, pre-
scribe values of the solution for a certain region or certain points in the
domain and become constraints on the function space, which lead to mod-
ifications of the system being solved.

5.5.1 Assembling Matrices with Boundary Conditions

Firedrake always imposes strong boundary conditions in a way that pre-
serves the symmetry of the operators, which is efficiently implemented

117

using the PyOP2 and PETSc abstractions as described in the following.
Symmetry is preserved by zeroing rows and columns of the matrix cor-

responding to boundary nodes. This operation would be very costly to
apply to an already assembled matrix in CSR format, as it would require
searching each row of the non-zero structure for the column positions to
zero. Entries to be set to zero are therefore already dropped during as-
sembly and never added to the global matrix in the first place. For this to
happen, it is sufficient to modify the maps used in the PyOP2 access de-
scriptor of the matrix, replacing entries corresponding to boundary nodes
by −1, which causes any contribution in the same matrix row and col-
umn to be ignored by PETSc. Subsequently, diagonal entries for rows
corresponding to boundary nodes are set to 1.

This implementation illustrates the power of the composition of ab-
stractions: a Firedrake operation efficiently expressed as a combination
of PyOP2 and PETSc operations, where neither of the lower layers has, or
needs to have, a concept of boundary conditions. To PyOP2 it is “just” a
different map and to PETSc it “just” a value to be ignored.

Firedrake however supports a number of ways in which strong bound-
ary conditions can be prescribed: when specifying a linear or non-linear
variational problem, in the call to assemble or solve, or by explicitly applying
the boundary condition to a function. When pre-assembling a system and
only specifying the boundary conditions in the call to solve, the boundary
conditions are not available at the time assemble is called:

A = assemble(a)

b = assemble(L)

solve(A, x, b, bcs=bcs)

In the case where assemble is called with boundary conditions, different
boundary conditions explicitly applied at a later point or specified in the
solve call take precedence. A naive implementation of the strategy de-
scribed above may therefore lead to assembling a matrix with boundary
conditions which is never used to solve a system and require unnecessary
and costly reassembly. Firedrake therefore delays the actual assembly un-
til the point where the final set of boundary conditions is known.

A call to assemble returns an unassembled Matrix object and no actual as-
sembly takes place. The sparsity pattern is built as described in Section
5.4.2 and the underlying PyOP2 Mat object is created. A callback function

118

Form a
unassembled

Matrix A
assembled

Matrix A
A = assemble(a, bcs) solve(A, x, b, bcs)

A.assemble()
A.thunk(bcs)

Figure 5.14: Stages in assembling a Firedrake Matrix

termed the assembly thunk2 is set on the returned Matrix object, which is
called during the solve with the final list of boundary conditions to per-
form the actual assembly and obtain an assembled matrix. The stages of
assembling a Firedrake Matrix are illustrated in Figure 5.14.

The operation of the callback is detailed in Section 5.4.3 and outlined
in Listing 2: for each kernel, a PyOP2 parallel loop is called to assembly
into the matrix, after its list of arguments has been created. However, the
pair of maps used to initialise the parallel loop argument for the output
matrix is modified according to the prescribed boundary conditions by
setting map entries corresponding to boundary nodes to −1. When all
parallel loops have been processed, the entries on the diagonal of rows
corresponding to boundary nodes are set to 1.

5.5.2 Boundary Conditions for Variational Problems

When solving a variational problem with strong boundary conditions, the
first step is modifying the provided initial guess u to satisfy the boundary
conditions at the boundary nodes before invoking the non-linear solve. As
described in Section 5.6.3, the PETSc SNES solver requires callbacks for
residual and Jacobian evaluation, which are implemented in Firedrake in
terms of assembling the residual form F and Jacobian form J respectively.

The Jacobian form J is assembled by calling the matrix assembly thunk
with the boundary conditions, causing boundary condition node indices
to be replaced by negative values in the indirection maps, which instructs
PETSc to drop the corresponding entries. After assembly has completed,
diagonal entries of J corresponding to boundary nodes are set to 1.

The residual form F is assembled without taking any boundary condi-
tions into account. Boundary condition nodes in the assembled residual
therefore contain incorrect values, which are set to zero after assembly has
completed, whereas the residual is correct on all other nodes. Note that

2A subroutine generated to aid the execution of another routine is often called thunk.

119

the same strategy of dropping boundary contributions used above could
be applied, but is not necessary for an efficient implementation, since set-
ting vector entries is comparatively inexpensive.

5.5.3 Boundary Conditions for Linear Systems

Linear systems, in which the matrix is pre-assembled, are solved with
boundary conditions using the implementation described in Section 5.5.1.

When assemble is called on the bilinear form a, an unassembled Matrix is
returned and no actual assembly takes place. The Matrix object defines a
callback method, the assembly thunk, which is called with the final set of
boundary conditions. At the point where solve is called, Firedrake applies
boundary conditions supplied to the solve call with highest priority. If
none are given, any boundary conditions applied when assemble was called
on A or subsequently added with apply are used.

The assembled matrix is then stored in the Matrix object so that reassem-
bly is avoided if the matrix is used in another solve call with the same
boundary conditions.

The right-hand side vector is computed by subtracting the assembled
action A of the bilinear form a on a vector ubc which has the boundary
conditions applied at the boundary nodes and is zero everywhere else

r = b− assemble(A(a, ubc)) (5.13)

and subsequently applying the boundary conditions to r.

5.6 Solving PDEs

Variational problems are commonly expressed in the canonical linear and
bilinear forms presented in Section 2.1.1. Firedrake’s solve function pro-
vides a unified interface for solving both linear and non-linear variational
problems as well as linear systems where the arguments are already as-
sembled matrices and vectors, rather than UFL forms.

This unified interface continues into the implementation, where linear
and non-linear variational forms are solved using the same code path.
Linear problems are transformed into residual form and solved using a
non-linear solver, which always converges in a single non-linear iteration.

120

5.6.1 Solving Non-linear Variational Problems

Recall from Section 2.1.1 the general non-linear variational problem ex-
pressed in the semilinear residual form

F(u; v) = 0 ∀v ∈ V (5.14)

with the unknown function u as a possibly non-linear and the test function
v as a linear argument.

A method commonly used in Firedrake to solve non-linear systems is
Newton’s method, where the solution is successively approximated by

uk+1 = uk − J(uk)
−1F(uk) k = 0, 1, . . . (5.15)

starting with an initial guess u0 of the solution. The Jacobian of the residual
J(uk) =

∂F(uk)
∂uk

is is required to be non-singular at each iteration.
The Newton iteration (5.15) is implemented in two steps:

1. approximately solve J(uk)∆uk = −F(uk), and

2. update uk+1 = uk + ∆uk.

A Jacobian can be supplied explicitly by the user if know, although this
is not required. If not supplied, Firedrake invokes UFL to compute the
Jacobian by automatic differentiation of the residual form F with respect
to the solution variable u.

5.6.2 Transforming Linear Variational Problems

A weak variational problem is expressed in the canonical linear form as

a(u, v) = L(v) ∀v ∈ V (5.16)

with a bilinear part a, which is linear in both the test and trial functions v
and u, and a linear part L, which is linear in the test function v.

This problem is transformed into residual form by taking the action
A(a, u) of the bilinear form a onto the unknown function u and subtract-
ing the linear form L:

F(u, v) = A(a, u)(v)− L(v) = 0 ∀v ∈ V. (5.17)

In this case, the Jacobian is known to be the bilinear form a and hence

121

there is no need to compute it using automatic differentiation. When
solving a linear variational problem, Firedrake therefore computes the
residual form according to (5.17) and passes it to the non-linear solver
along with the solution function u and the bilinear form a as the Jacobian.
A single non-linear iteration is required to solve this system and PETSc is
instructed to skip the unnecessary convergence check afterwards.

Observe how for the residual form (5.17), the first Newton step

u1 = u0 − J(u0)
−1F(u0) (5.18)

with an initial guess u0 = 0, solution u = u1 and identifying J as the linear
operator A assembled from the bilinear form a, is equivalent to solving the
linear system

Au = b, (5.19)

where b is the assembled residual form equivalent to the right-hand side
of (5.16), since the action of a on a zero vector vanishes:

− F(u0) = −(A(a, u0)(v)− L(v)) = L(v). (5.20)

5.6.3 Non-linear Solvers

To solve non-linear systems, Firedrake uses PETSc SNES [Balay et al., 2013,
Chapter 5], a uniform interface to Newton-like and quasi-Newton solution
schemes. All these schemes are implemented using evaluations of the
residual and its derivative, the Jacobian, at given points. SNES therefore
requires two callbacks to be provided, one for evaluation of the residual
and one for evaluation of the Jacobian.

Firedrake implements the residual callback by assembling the residual
form of the non-linear variational problem. Similarly, the Jacobian call-
back is implemented in terms of assembling the Jacobian form, which was
either supplied or computed by automatic differentiation of the residual
form as detailed above.

The linear system for each non-linear iteration is solved using the PETSc
KSP family of Krylov subspace method solvers [Balay et al., 2013, Chapter
4]. Firedrake uses PETSc’s options database directly to give users full
control when specifying solver options. By default, the solve call will use
GMRES with an incomplete LU factorisation as the preconditioner.

122

5.6.4 Solving Pre-assembled Linear Systems

When solving a time-dependent linear system, often the bilinear form a
does not change between time steps, whereas the linear form L does. It
is therefore desirable to pre-assemble the bilinear forms in such systems
as described in Section 5.4 to reuse the assembled operator in successive
linear solves and save the potentially costly and unnecessary reassembly
in the time stepping loop. The linear pre-assembled system has the form

A~x =~b (5.21)

where A and ~b are the assembled bilinear and linear forms and ~x is the
unknown vector to solve for. In Firedrake, the Matrix A and Function b are
obtained by calling assemble on the UFL bilinear and linear forms a and L
defining the variational problem:

A = assemble(a)

b = assemble(L)

The same unified solve interface as for variational problems is used with
different arguments, passing in the assembled Matrix A, the solution Function

x and the assembled right-hand side Function b:

solve(A, x, b)

When called in this form, solve directly calls the PyOP2 linear solver
interface detailed in Section 4.6.5 instead of using the non-linear solver.

It is worth highlighting that Firedrake implements a caching mechanism
for assembled operators, avoiding the reassembly of bilinear forms when
using the variational solver interface in a time stepping loop. To avoid
cached operators filling up the entire memory, Firedrake monitors avail-
able system memory and evicts cached operators base on their “value”
until memory usage is below a set threshold. Presently, this value is the as-
sembly time, corresponding to a first-in first-out (FIFO) eviction strategy.
Explicit pre-assembly is therefore unnecessary for most practical cases,
since it provides no performance advantage over the variational interface.

123

5.6.5 Preconditioning Mixed Finite Element Systems

To solve mixed problems with multiple coupled variables as described
in Section 5.2 efficiently, it is important to exploit the block structure of
the system in the preconditioner. PETSc provides an interface to com-
posing “physics-based” preconditioners for mixed systems using its field-
split technology [Balay et al., 2013, Chapter 4.5]. As described in Section
4.8.2, PyOP2 stores the block matrices arising in such problems in nested
form using the PETSc MATNEST format, which provides efficient access
to individual sub-matrices without having to make expensive copies. Fire-
drake can therefore efficiently employ the fieldsplit method to build pre-
conditioners from Schur complements when assembling linear systems as
described in this section.

Recall the mixed formulation of the Poisson equation from Section 5.2.1:

〈σ, τ〉 − 〈divτ, u〉+ 〈divσ, v〉 = 〈 f , v〉 ∀(τ, v) ∈ Σ×V (5.22)

As described in Section 5.2.3, the monolithic left-hand side is conceptu-
ally a 2× 2 block matrix(

〈σ, τ〉 〈divτ, u〉
〈divσ, v〉 0

)
=

(
A B
C D

)
, (5.23)

which can be factored into lower triangular, diagonal and upper triangular
parts:

LDU =

(
I 0

CA−1 I

)(
A 0
0 S

)(
I A−1B
0 I

)
. (5.24)

This is the Schur complement factorisation of the block system with inverse

P =

(
I −A−1B
0 I

)(
A−1 0

0 S−1

)(
I 0

−CA−1 I

)
. (5.25)

where S is the Schur complement

S = D− CA−1B. (5.26)

Firedrake takes care of setting up the fieldsplit blocks in the case where

124

a mixed system is solved. Using such a factorisation therefore requires no
change to the user code other than configuring the solve call to use it via
the solver parameters:

solve(a == L, u,

solver_parameters ={'ksp_type ': 'gmres '

'pc_type ': 'fieldsplit ',

'pc_fieldsplit_type ': 'schur ',

'pc_fieldsplit_schur_fact_type ': 'FULL',

'fieldsplit_0_ksp_type ': 'cg',

'fieldsplit_1_ksp_type ': 'cg'})

As configured above with Schur complement factorisation type 'FULL',
PETSc uses an approximation to P to precondition the system, which is
applied via block triangular solves with the grouping L(DU). Other avail-
able options are 'diag', 'lower' and 'upper', which use only the D block,
with the sign of S flipped to make the preconditioner positive definite, the
L and D blocks and the D and U blocks of (5.24) respectively.

Inverses of A and S are never computed explicitly. Instead, the actions
of A−1 and S−1 are approximated using a Krylov method, which is se-
lected using the 'fieldsplit_0_ksp_type' and 'fieldsplit_1_ksp_type' options
shown above respectively.

5.7 Comparison with the FEniCS/DOLFIN Tool Chain

Firedrake is deliberately compatible to DOLFIN in its public API as far
as possible, but rather different in its implementation. Figure 5.15 shows
the Firedrake and FEniCS/DOLFIN tool chains side by side. This section
discusses a number of differences worth highlighting.

A key design decision in Firedrake and PyOP2 is the use of Python
as the primary language of implementation. Performance critical library
code such as processing the mesh or building sparsity patterns is imple-
mented in Cython [Behnel et al., 2011], which is also used to interface to
third party libraries, in particular PETSc [Balay et al., 1997] via its petsc4py
[Dalcin et al., 2011] interface. For executing kernels over the mesh, PyOP2
generates native code for the target platform. DOLFIN takes the opposite
approach, where the core library is implemented in C++ and an interface
is exposed to Python via the SWIG [Beazley, 2003] interface generator.

125

P
yth

o
n

C
C
+
+

DOLFIN
C++ lib

Unified Form
Language (UFL)

FEniCS
Interface

FFC Form
Compiler

FIAT

PETSc
(KSP, SNES)

UFC

SWIG

Instant JIT compiler

MPI

CPU (OpenMP)

Problem definition
in FEM weak form

Local assembly
kernels (C++)

Meshes,
matrices,
vectors
(non)linear
solves

Unified Form
Language (UFL)

PyOP2
Interface

modified
FFC

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

Problem definition
in FEM weak form

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake
Interface

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

FIAT

parallel
loop

parallel
loop

COFFEE
AST optimizer

data structures
(Set, Map, Dat)

Figure 5.15: Overview of the Firedrake (left) and FEniCS/DOLFIN (right) tool chains

Even though the interface is automatically generated, the interface defi-
nitions still need to be maintained by hand. Since the Python API mim-
ics the corresponding C++ API in most cases, some Python features that
could make the API more intuitive to use, such as properties, are not used.
Firedrake inherits this API design for compatibility reasons. Furthermore,
the SWIG layer presents an impenetrable barrier to the PyDOLFIN user,
whereas the Firedrake user can inspect or access Firedrake and PyOP2
constructs as Python objects all the way down to the parallel loop level.

Both DOLFIN and Firedrake use UFL as part of their interface and FFC
to translate forms into local assembly kernels, however the role of FFC is
different. For DOLFIN, FFC generates C++ code strings conforming to the
UFC interface specification, which are used unaltered. FFC is therefore re-
sponsible for producing optimised code. The modified FFC version used
by Firedrake on the other hand produces an unscheduled kernel loop nest
in form of an abstract syntax tree (AST). This AST is passed on to the COF-
FEE AST optimiser described in Section 4.2.2, which can take into account
particular characteristics of the PyOP2 backend in its optimisations. Fire-
drake presently requires custom versions of UFL, FFC and FIAT, however
all effort is made to retain compability with the FEniCS mainline such that

126

any modifications can easily be integrated back into the mainline.

The abstract syntax tree optimised by COFFEE is used to produce a ker-
nel suitable for execution in a PyOP2 parallel loop, which is a generic in-
terface, parametrised by access descriptors and capable of executing any
kernel currently used in Firedrake. Adding further types of kernels re-
quires no modification of this interface and it presents a natural way of
running computations which are not expressible in UFL, providing an “es-
cape hatch” to break out of the Firedrake abstraction. A common use case
is computing the maximum of a continuous and a discontinuous field for
every degree of freedom of the continuous field as part of a slope limiter.

DOLFIN instead implements the UFC interface specification, a fixed
set of kernels with prescribed interfaces, defined in a C++ header file.
Even though UFC purports to be a “black box” interface for assembly, it
is designed for an assembler that operates sequentially on a cell-by-cell
basis. Every task needs its own interface and adding support for a new
type of computation or modifying the signature of an existing operation
requires a modification of UFC. Parallel assembly on a many-core archi-
tecture would even require a fundamental redesign.

Using PyOP2 as the parallel execution layer for assembly kernels takes a
significant amount of complexity out of Firedrake’s responsibility, keeping
its code base very compact and maintainable. Storage, transfer and com-
munication of data as well as support for multiple backends are thereby
abstracted away and handled by PyOP2. Furthermore, Firedrake contains
no parallel code since all parallelism is handled by PyOP2 or PETSc.

With this design, a separation of concerns is achieved, where Firedrake
is purely a system for reasoning about variational forms, whereas PyOP2
is an execution layer for parallel computations over the mesh, which is
agnostic to the higher abstraction layer driving it. A contributor to PyOP2
needs no specific knowledge of the finite element method and how to
implement it, while a Firedrake contributor does not need to be expert on
parallel computations or programming accelerators. Similarly, a Firedrake
user can break out of the abstraction by extracting the underlying PyOP2
data structures from Firedrake objects and making direct calls to PyOP2.

127

5.8 Conclusions

In this chapter, it has been demonstrated how Firedrake abstracts the
mathematical operations and concepts involved in solving partial differ-
ential equations with the finite element method to form a modular, ex-
tensible and maintainble framework for scientific computations capable
of solving a diverse range of problems. Firedrake composes a variety of
building blocks from different scientic communities and, where appropri-
ate, established solutions are used in favour of custom implementations.
These components and their responsibilities are listed below:

The Unified Form Language (UFL) is used to describe variational forms and
their discretisations.

The FEniCS form compiler (FFC) translates variational forms into numeri-
cal kernels describing the local assembly operations.

The FInite element Automatic Tabulator (FIAT) is called by FFC to tabulate
finite element basis functions and their derivatives.

PETSc provides linear and non-linear solvers, preconditioners and dis-
tributed data structures for matrices, vectors and unstructured meshes.

evtk is used for writing out fields to files in the popular VTK format.

PyOP2 is the parallel execution layer for finite element assembly kernels
on different hardware platforms, and abstracts both the mesh topology
and the data storage, layout and communication for fields and matrices.

This design keeps responsibilities clearly separated and the Firedrake
code base very compact and maintainable. Firedrake keeps operations
closed over their abstractions wherever possible, and when not, the num-
ber of code paths using a lower level abstraction are minimised. An exam-
ple of this practice is the solver interface, which always uses a non-linear
solver, automatically transforming linear problems into residual form.

128

Chapter 6

Experimental Evaluation

Firedrake is a tool chain capable of solving a wide range of finite element
problems, which is demonstrated in this chapter through experiments
chosen to cover different characteristics of the Firedrake implementation.
These include assembling and solving a stationary Poisson problem, the
non-linear time-dependent Cahn-Hilliard equation and the linear wave
equation using an explicit time stepping scheme. Implementation aspects
investigated are the assembly of left- and right-hand sides for regular and
mixed forms, solving linear and non-linear systems as well as evaluating
expressions. All benchmarks represent real-world applications used in
fluid dynamics to model diffusion, phase separation of binary fluids and
wave propagation.

Source code for all benchmarks and the scripts used to drive them are
available as part of the firedrake-bench repository hosted on GitHub1.

6.1 Experimental Setup

Computational experiments were conducted on the UK national super-
computer ARCHER, a Cray XC30 architecture [Andersson, 2014] with an
Aries interconnect in Dragonfly topology. Compute nodes contain two 2.7
GHz, 12-core E5-2697 v2 (Ivy Bridge) series processors linked via a Quick
Path Interconnect (QPI) and 64GB of 1833MHz DDR3 memory accessed
via 8 channels and shared between the processors in two 32GB NUMA
regions. Each node is connected to the Aries router via a PCI-e 3.0 link.

1https://github.com/firedrakeproject/firedrake-bench

129

https://github.com/firedrakeproject/firedrake-bench

Firedrake and PETSc were compiled with version 4.8.2 of the GNU
Compilers and Cray MPICH2 6.3.1 with the asynchronous progress fea-
ture enabled was used for parallel runs. Generated code was compiled
with the -O3 -mavx flags. The software revisions used were Firedrake re-
vision c8ed154 from September 25 2014, PyOP2 revision f67fd39 from
September 24 2014 with PETSc revision 42857b6 from August 21 2014
and DOLFIN revision 30bbd31 from August 22 2014 with PETSc revision
d7ebadd from August 13 2014.

Generated code is compiled with -O3 -fno-tree-vectorize in the Firedrake
and -O3 -ffast-math -march=native in the DOLFIN case.

Unless otherwise noted, DOLFIN is configured to use quadrature repre-
sentation with full FFC optimisations and compiler optimisations enabled
and Firedrake makes use of COFFEE’s loop-invariant code motion, align-
ment and padding optimisations described in Luporini et al. [2014] using
quadrature representation. Meshes are reordered using PETSc’s imple-
mentation of reverse Cuthill-McKee in the Firedrake case and DOLFIN’s
implementation respectively.

Benchmark runs were executed with exclusive access to compute nodes
and process pinning was used. All measurements were taken preceded by
a dry run of the same problem to pre-populate the caches for kernels and
generated code to ensure compilation times do not distort measurements.
Reported timings are the minimum of three consecutive runs.

6.2 Poisson

Poisson’s equation is a simple elliptic partial differential equation. A pri-
mal Poisson problem for a domain Ω ∈ Rn with boundary ∂Ω = ΓD ∪ ΓN

is defined as:

−∇2u = f in Ω, (6.1)

u = 0 on ΓD, (6.2)

∇u · n = 0 on ΓN . (6.3)

The weak formulation reads: find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ V (6.4)

130

where V is a suitable function space satisfying the Dirichlet boundary
condition u = 0 on ΓD.

This benchmark demonstrates assembly of a bilinear and linear form
into a sparse matrix and vector, and solving a linear system with a pre-
conditioned Krylov method.

6.2.1 Problem Setup

The source term f is defined as

f = 48π2 cos(4πx) sin(4πy) cos(4πz) (6.5)

so that the analytical solution is know to be

u = cos(4πx) sin(4πy) cos(4πz). (6.6)

Since the operator is symmetric positive definite, the problem is solved
using a CG solver with the HYPRE Boomeramg algebraic multigrid pre-
conditioner [Falgout et al., 2006] on a unit cube mesh of varying resolution
and for varying polynomial degrees. Listing 6.1 shows the Firedrake code
for this problem.

6.2.2 Results

Strong scaling runtimes for matrix and right-hand side assembly and lin-
ear solve comparing DOLFIN and Firedrake on up to 1536 cores are shown
in Figure 6.1 for problems of approximately 0.5M DOFs for first order, 4M
DOFs for second order and 14M DOFs for third order. Solve time clearly
dominates in all cases, in particular for higher order and in the strong scal-
ing limit, where the scaling flattens out at around 5k DOFs per core. The
differences in solving times between Firedrake and DOLFIN are caused
by different global DOF numberings due to different mesh reordering im-
plementations, which affect the effectiveness of the AMG preconditioner.

Firedrake is faster at assembling left- and right-hand sides in all cases,
demonstrating the efficiency of low overhead assembly kernel execution
through PyOP2. Matrix assembly is notably faster for the P3 case and
scales considerably further in the strong scaling limit, flattening out only
at about 1k DOFs per core, compared to approximately 5k for DOLFIN.

131

Listing 6.1: Firedrake code for the Poisson equation. mesh and degree are assumed to have
been defined previously. UFL functions and operations are defined in orange,
while other FEniCS language constructs are given in blue.

V = FunctionSpace(mesh , "Lagrange", degree)

bc = DirichletBC(V, 0.0, [3, 4]) # Boundary condition for y=0,y=1

u = TrialFunction(V)
v = TestFunction(V)
f = Function(V).interpolate(Expression(

"48*pi*pi*cos(4*pi*x[0])*sin(4*pi*x[1])*cos(4*pi*x[2])"))
a = inner(grad(u), grad(v))*dx
L = f*v*dx

u = Function(V)
A = assemble(a, bcs=bc)
b = assemble(L)
bc.apply(b)
params = {'ksp_type ': 'cg',

'pc_type ': 'hypre ',
'pc_hypre_type ': 'boomeramg ',
'pc_hypre_boomeramg_strong_threshold ': 0.75,
'pc_hypre_boomeramg_agg_nl ': 2,
'ksp_rtol ': 1e-6,
'ksp_atol ': 1e-15}

solve(A, u, b, solver_parameters=params)

1
531k

6
88k

24
22k

96
5k

384
1k

1536
345

10-4

10-3

10-2

10-1

100

101

102

tim
e

[s
ec

]

3
1.39M

12
347k

48
86k

192
21k

768
5k

Number of cores / DOFs per core

1
14.00M

6
2.33M

24
583k

96
145k

384
36k

1536
9k

perfect speedup
matrix assembly, Firedrake
rhs assembly, Firedrake

solve, Firedrake
matrix assembly, DOLFIN
rhs assembly, DOLFIN

solve, DOLFIN
rhs overhead

Figure 6.1: Poisson strong scaling on 1-1536 cores for degree one (left), two (center) and
three (right) basis functions. Perfect speedup is indicated with respect to a
single core.

132

Right-hand side assembly is considerably faster for Firedrake in all cases,
with more than an order of magnitude difference for the P1 sequential
base line case. Due to this faster sequential base line, the Firedrake right-
hand side assembly is affected by non-parallelisable overheads in the
strong scaling limit sooner than DOLFIN. The Firedrake overhead is indi-
cated in Figure 6.1 and in particular the scaling curve for P1 shows that
this overhead causes the scaling to flatten out from about 10k DOFs per
core. The time spent on right-hand side assembly however is negligible
such that the overall run time for Firedrake is not greatly affected.

192
2k

384
1k

768
691

1536
345

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
ci

en
cy

 w
.r.

t.
24

 c
or

es

192
21k

384
10k

768
5k

1536
2k

Number of cores / DOFs per core

192
72k

384
36k

768
18k

1536
9k

matrix assembly, Firedrake
rhs assembly, Firedrake

solve, Firedrake
matrix assembly, DOLFIN

rhs assembly, DOLFIN
solve, DOLFIN

Figure 6.2: Poisson strong scaling efficiency with respect to a full node (24 cores) on up
to 1536 cores for degree one (left), two (center) and three (right) basis func-
tions. Firedrake matrix assembly shows the highest efficiency across the board,
whereas the solver drops off very quickly. Firedrake right-hand side assembly
achieves considerably lower efficiencies compared to DOLFIN due to the faster
baseline performance.

Parallel efficiency for the strong scaling results with respect to a full
node (24 cores) is shown in Figure 6.2. Solver efficiency is similar for both
Firedrake and DOLFIN, dropping to below 40% on 10k, 20% for 2k and
10% for 1k DOFs per core. Left-hand side assembly is significantly more
efficient in Firedrake, in particular for P1 and P2, where efficiencies of over
25%, 55% and 65% are maintained for P1, P2 and P3 with 345, 2k and 9k
DOFs per core respectively. Efficiency of right-hand side assembly drops
quicker for Firedrake due to the better baseline performance, reaching a
similar level as DOLFIN of approximately 5%, 15% and 35% for P1, P2
and P3 with 345, 2k and 9k DOFs per core at the highest core count.

Weak scaling run times and efficiencies for P1 basis functions are shown

133

0.1

0.2

0.3

0.4

0.5

0.6

tim
e

[s
ec

]

1
1k

3
3k

6
6k

12
12k

24
24k

Number of cores / DOFs

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
ci

en
cy

 w
.r.

t.
1/

24
 c

or
es

192
195k

384
389k

768
778k

1536
1.6M

DOFs per core: 1k

matrix assembly, Firedrake
rhs assembly, Firedrake
solve, Firedrake
matrix assembly, DOLFIN
rhs assembly, DOLFIN
solve, DOLFIN

Figure 6.3: Poisson for P1 basis functions weak scaling intra node on 1-24 cores (left) and
inter node on 24-1536 cores with a base size of 1k DOFs per core. The solver
scales poorly as expected given the low number of DOFs per core. Firedrake
achieves almost perfect weak scaling for assembly beyond one node, whereas
DOLFIN drops off significantly.

in Figure 6.3 separately for the intra node case for up to 24 cores and the
inter node case for 24 to 1536 cores. Within a node, processes share re-
sources, in particular memory bandwidth, which limits achievable perfor-
mance for these bandwidth bound computations. Scaling beyond a node,
resources per core remain constant, and the limiting factor for scalability
is network communication latency. The base size was chosen deliber-
ately small with only 1k DOFs per core. Within a node, efficiency drops
off significantly from one to three and three to six cores due to resource
contention. The solver drops most significantly, to 20% in the Firedrake
and 10% in the DOLFIN case, whereas right-hand side assembly achieves
above 70% and 50% respectively. DOLFIN maintains a better efficiency for
left-hand side assembly of above 45%, whereas Firedrake drops to about
35%. Beyond one node, the observed performance is significantly different
with Firedrake weak scaling almost perfectly for assembly with efficien-
cies above 90%, whereas DOLFIN drops to around 20% on 1536 cores.
The solver scales poorly, with an efficiency dropping to 50% already on
two nodes and dropping further to below 10% efficiency on 1536 cores,

134

which is expected given the low number of DOFs per core. The number
of Krylov iterations increases from 7 on 1 core to 11 on 24 and 16 on 1536
cores. Similarly, the AMG preconditioner uses 4 levels of coarsening on 1,
10 on 24 and 16 on 1536 cores.

6.3 Linear Wave Equation

The strong form of the wave equation, a linear second-order PDE, on a
domain Ω ∈ Rn with boundary ∂Ω = ΓN ∪ ΓD is defined as:

∂2φ

∂t2 −∇
2φ = 0, (6.7)

∇φ · n = 0 on ΓN , (6.8)

φ =
1

10π
cos(10πt) on ΓD. (6.9)

To facilitate an explicit time stepping scheme, an auxiliary quantity p is
introduced:

∂φ

∂t
= −p (6.10)

∂p
∂t

+∇2φ = 0 (6.11)

∇φ · n = 0 on ΓN (6.12)

p = sin(10πt) on ΓD (6.13)

The weak form of (6.11) is formed as: find p ∈ V such that

∫
Ω

∂p
∂t

v dx =
∫

Ω
∇φ · ∇v dx ∀v ∈ V (6.14)

for a suitable function space V. The absence of spatial derivatives in (6.10)
makes the weak form of this equation equivalent to the strong form so it
can be solved pointwise.

An explicit symplectic method is used in time, where p and φ are offset
by a half time step. Time stepping φ in (6.10) is a pointwise operation,
whereas stepping forward p in (6.14) involves inverting a mass matrix.
However, by lumping the mass, this operation can be turned into a point-
wise one, in which the inversion of the mass matrix is replaced by a point-

135

Listing 6.2: Firedrake implementation of the linear wave equation.

from firedrake import *
mesh = Mesh("wave_tank.msh")

V = FunctionSpace(mesh , 'Lagrange ', 1)
p = Function(V, name="p")
phi = Function(V, name="phi")

u = TrialFunction(V)
v = TestFunction(V)

p_in = Constant (0.0)
bc = DirichletBC(V, p_in , 1) # Boundary condition for y=0

T = 10.
dt = 0.001
t = 0

while t <= T:
p_in.assign(sin(2*pi*5*t))
phi -= dt / 2 * p
p += assemble(dt*inner(grad(v),grad(phi))*dx) / assemble(v*dx)
bc.apply(p)
phi -= dt / 2 * p
t += dt

wise multiplication by the inverse of the lumped mass.

This benchmark demonstrates an explicit method, in which no linear
system is solved and therefore no PETSc solver is invoked. The expres-
sion compiler is used for the p and φ updates and all aspects of the com-
putation are under the control of Firedrake. The implementation of this
problem in Firedrake is given in Listing 6.2.

6.3.1 Results

Strong scaling runtimes are shown in Figure 6.4 for up to 384 cores and
are limited by the measured non-parallelisable overhead indicated by the
horizontal lines in the graph. The φ update is a very simple expression
executed as a direct loop and follows the projected scaling curve (dashed)
based on the sequential run time and the overhead almost perfectly. The
p update involves assembling a vector, which is executed as an indirect
loop and requires exchanging halo data. Therefore, the measured scal-
ing trails behind the projected scaling due to communication overhead

136

1
4.11M

3
1.37M

6
684k

12
342k

24
171k

48
85k

96
42k

192
21k

384
10k

Number of cores / DOFs per core

10-4

10-3

10-2

10-1

100

tim
e

[s
ec

] p
er

 ti
m

e
st

ep

perfect speedup
p
phi
p overhead
phi overhead
p model
phi model

Figure 6.4: Explicit wave strong scaling on up to 384 cores. Perfect speedup is indicated
with respect to a single core. Strong scaling is limited by non-parallelisable
overheads.

notably starting from 48 cores, which amounts to two full nodes. Com-
munication between the nodes has to pass over the Aries interconnect.
Caching of the assembled expressions in the expression compiler keeps
the sequential overheads low.

Parallel efficiency for the strong scaling results with respect to a sin-
gle core is given in Figure 6.5. An efficiency of about 40% and above is
maintained down to 85k and 42k DOFs per core for the p and φ updates
respectively, dropping to about 15% for 10k DOFs per core.

Weak scaling runtimes and efficiencies are shown in Figure 6.6 sepa-
rately for the intra node case for up to 24 cores and the inter node case for
24 to 384 cores. The φ and p update show a significant drop in efficiency to
about 50% and 10% respectively from one to three cores due to contention
for memory bandwidth and subsequently maintain this level within the
node. Across nodes, scaling is almost perfect, with the φ update showing
superlinear speedups and the p update dropping to 80% efficiency due to
increased communication overhead only for 384 cores.

137

24
171k

48
85k

96
42k

192
21k

384
10k

Number of cores / DOFs per core

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
ci

en
cy

 w
.r.

t.
1

co
re

s
p
phi

Figure 6.5: Explicit wave strong scaling efficiency with respect to a single node on up to
384 cores.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tim
e

[s
ec

]

1
84k

3
255k

6
498k

12
1.0M

24
2.0M

Number of cores / DOFs

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
ci

en
cy

 w
.r.

t.
1/

24
 c

or
es

48
4.1M

96
8.2M

192
16.4M

384
31.4M

DOFs per core: 81k

p
phi

Figure 6.6: Explicit wave weak scaling intra node on 1-24 cores and inter node on 24-384
cores.

138

6.4 Cahn-Hilliard

The final experiment presented in this section, is the fourth-order parabolic
time-dependent non-linear Cahn-Hilliard equation, based on a DOLFIN
demo2, which involves first-order time derivatives, and second- and fourth-
order spatial derivatives. It describes the process of phase separation of
the two components of a binary fluid and is written as

∂c
∂t
−∇ ·M

(
∇
(

d f
dc
− λ∇2c

))
= 0 in Ω, (6.15)

M
(
∇
(

d f
dc
− λ∇2c

))
= 0 on ∂Ω, (6.16)

Mλ∇c · n = 0 on ∂Ω (6.17)

with c the unknown fluid concentration, f a non-convex function in c, M
the diffusion coefficient and n the outward pointing boundary normal.

Introducing an auxiliary quantity µ, the chemical potential, allows the
equation to be rephrased as two coupled second-order equations:

∂c
∂t
−∇ ·M∇µ = 0 in Ω, (6.18)

µ− d f
dc

+ λ∇2c = 0 in Ω. (6.19)

The time-dependent variational form of the problem with unknown
fields c and µ is given as: find (c, µ) ∈ V ×V such that

∫
Ω

∂c
∂t

q dx +
∫

Ω
M∇µ · ∇q dx = 0 ∀ q ∈ V, (6.20)∫

Ω
µv dx−

∫
Ω

d f
dc

v dx−
∫

Ω
λ∇c · ∇v dx = 0 ∀ v ∈ V (6.21)

for a suitable function space V.
Applying the Crank-Nicolson scheme for time discretisation yields:

∫
Ω

cn+1 − cn

dt
q dx +

∫
Ω

M∇1
2
(µn+1 + µn) · ∇q dx = 0 ∀ q ∈ V (6.22)∫

Ω
µn+1v dx−

∫
Ω

d fn+1

dc
v dx−

∫
Ω

λ∇cn+1 · ∇v dx = 0 ∀ v ∈ V (6.23)

2http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/

cahn-hilliard/python/documentation.html

139

 http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/cahn-hilliard/python/documentation.html
 http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/cahn-hilliard/python/documentation.html

Listing 6.3: A custom Kernel setting the initial condition for the Cahn-Hilliard example.

Expression setting the initial condition
init_code = "A[0] = 0.63 + 0.02*(0.5 -

(double)random ()/RAND_MAX);"
Setup code setting the random seed (executed once)
user_code = """int __rank;
MPI_Comm_rank(MPI_COMM_WORLD , &__rank);
srandom (2 + __rank);"""
par_loop(init_code , direct , {'A': (u[0], WRITE)},

headers =["#include <stdlib.h>"], user_code=user_code)

6.4.1 Problem Setup

The problem is solved on the unit square with f = 100c2(1− c2), λ = 0.01,
M = 1 and dt = 5 · 10−6. The function space V is the space of first order
Lagrange basis functions.

Firedrake allows the initial condition to be set by defining a custom
Kernel and executing a parallel loop, in which the expression may be writ-
ten as a C string. The custom Kernel used to set the initial condition in this
case is shown as Listing 6.3.

To solve the mixed system, a GMRES solver with a fieldsplit precondi-
tioner using a lower Schur complement factorisation as described in Sec-
tion 5.6.5 is employed. When solving a mixed system with a 2× 2 block
matrix with blocks A, B, C, D the Schur complement S is given by

S = D− CA−1B. (6.24)

and the lower factorisation is an approximation to(
A 0
C S

)−1

=

(
A−1 0

0 S−1

)(
I 0

−CA−1 I

)
. (6.25)

where A−1 and S−1 are never explicitly formed.

An approximation to A−1 is computed using a single V-cycle of the
HYPRE Boomeramg algebraic multigrid preconditioner. The inverse Schur
complement, S−1, is approximated by

S−1 ≈ Ŝ−1 = H−1MH−1, (6.26)

140

using a custom PETSc mat preconditioner3, where H and M are defined as

H =
√

a〈u, v〉+
√

c〈∇u,∇v〉 ∀v ∈ V ×V (6.27)

M = 〈u, v〉 ∀v ∈ V ×V (6.28)

with a = 1 and b = dt∗λ
1+100dt [Bosch et al., 2014].

6.4.2 Results

1
8.01M

3
2.67M

6
1.33M

12
667k

24
333k

48
166k

96
83k

192
41k

384
20k

768
10k

1536
5k

Number of cores / DOFs per core

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

tim
e

[s
ec

]

perfect speedup
initial condition, Firedrake
Assemble cells, Firedrake
SNES solver execution, Firedrake

initial condition, DOLFIN
Assemble cells, DOLFIN
SNES solver execution, DOLFIN

Figure 6.7: Cahn-Hilliard strong scaling for a problem with 8M DOFs for ten time steps
on up to 1536 cores. Perfect speedup is indicated with respect to a single core.

Strong scaling runtimes for up to 1536 cores comparing Firedrake and
DOLFIN for solving the nonlinear system, assembling the residual and
Jacobian forms as well as evaluating the initial condition on an 8M DOF
mesh for ten time steps are shown in Figure 6.7. Both Firedrake and
DOLFIN achieve close to linear scaling for assembly down to 10k DOFs

3The preconditioner implementation is based on https://bitbucket.org/

dolfin-adjoint/da-applications/src/520230b/ohta kawasaki/

141

 https://bitbucket.org/dolfin-adjoint/da-applications/src/520230b/ohta_kawasaki/
 https://bitbucket.org/dolfin-adjoint/da-applications/src/520230b/ohta_kawasaki/

per core. Firedrake however is consistently faster between one and two
orders of magnitude, demonstrating the efficiency of assembling mixed
spaces using the form splitting approach described in Section 5.2.4. Fur-
thermore, the parallel loop objects for residual and Jacobian evaluation
are cached on their respective forms, allowing subsequent loops to be
called immediately. The loops themselves execute in efficient native code
through PyOP2, where the kernels are inlined.

Similar scaling behavior is observed for evaluating the initial condition
with Firedrake again faster by about two orders of magnitude, demon-
strating the efficiency of expression evaluation using a PyOP2 kernel for
the initial condition as opposed to a C++ virtual function call which is re-
quired for DOLFIN. Scaling however flattens out in both cases from about
40k DOFs per core due to non-parallelisable overheads. Solver scaling is
initially equivalent, with Firedrake gaining a significant advantage start-
ing from about 80k DOFs per core. This is due to the use of a PETSc
MATNEST [Balay et al., 2013, Section 4.5] as described in Section 4.8.2,
which is more efficient when using a fieldsplit preconditioner since it does
not require expensive copies for extracting the sub blocks of the matrix.

96
83k

192
41k

384
20k

768
10k

1536
5k

Number of cores / DOFs per core

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
ra

lle
l e

ffi
ci

en
cy

 w
.r.

t.
1

co
re

s

initial condition, Firedrake
Assemble cells, Firedrake
SNES solver execution, Firedrake

initial condition, DOLFIN
Assemble cells, DOLFIN
SNES solver execution, DOLFIN

Figure 6.8: Cahn-Hilliard strong scaling efficiency with respect to a single core for a prob-
lem with 8M DOFs on up to 1536 cores run for ten time steps.

142

The parallel efficiency for strong scaling shown in Figure 6.8 shows ad-
vantages for DOLFIN for assembly due to the faster sequential baseline
of Firedrake. DOLFIN maintains an efficiency of 60% down to 10k DOFs
per core, whereas Firedrake drops to 35% at the same number of DOFs.
Efficiency for evaluating the initial condition is comparable for both and
considerably lower compared to assembly due to non-parallelisable over-
heads. Solver efficiency is considerably higher for Firedrake, maintaining
20% or above down to 10k DOFs per core, whereas DOLFIN drops to
below 5% at the same number of DOFs.

0

10

20

30

40

tim
e

[s
ec

]

1
1k

3
3k

6
6k

12
12k

24
24k

Number of cores / DOFs

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
ci

en
cy

 w
.r.

t.
1/

24
 c

or
es

192
192k

384
384k

768
769k

1536
1.5M

DOFs per core: 1k

initial condition, Firedrake
Assemble cells, Firedrake
SNES solver execution, Firedrake
initial condition, DOLFIN
Assemble cells, DOLFIN
SNES solver execution, DOLFIN

Figure 6.9: Cahn-Hilliard weak scaling intra node on 1-24 cores and inter node on 24-1536
cores.

Weak scaling run times and parallel efficiencies are shown separately
for 1-24 cores intra and 24-1536 cores inter node in Figure 6.9, comparing
Firedrake and DOLFIN for assembly, nonlinear solve and evaluation of the
initial condition. For all of these, efficiency drops intra node from one to
12 cores and then remains at the same level for 24 cores. Evaluation of the
initial condition in Firedrake achieves the best efficiency of consistently
above 80%, whereas DOLFIN drops to about 30% on 24 cores. Assembly
efficiency is comparable for Firedrake and DOLFIN, achieving 60% effi-

143

ciency or above. Solver efficiency drops to below 40% for Firedrake and
below 30% for DOLFIN at 24 cores respectively.

Inter node, the behavior is considerably different, with Firedrake show-
ing close to perfect weak scaling for evaluating the initial condition and
maintaining an efficiency of 90% or greater for assembly. DOLFIN drops
to below 30% for both at 1536 cores. The solver is considerably less ef-
ficient, as expected due to the low number of DOFs per core, with effi-
ciencies dropping to about 15% for Firedrake and below 10% for DOLFIN
respectively at 1536 cores.

6.5 Conclusions

The results presented in this chapter demonstrate that Firedrake delivers
competitive or superior performance and scalability compared to the FEn-
iCS tool chain for a range of finite element problems running sequentially
or parallel. In particular, assembly of matrices achieves moderate and
right-hand sides considerable speedups for all problems investigated.

This result is evidence of the efficiency of the PyOP2 parallel loop in-
terface used by Firedrake to execute assembly computations. The assem-
bly function implemented in DOLFIN’s C++ library requires populating a
C++ data structure to be passed in a function call into an external shared
object, to evaluate the generated local assembly kernel for every cell of the
mesh. PyOP2 on the other hand generates an assembly loop specifically
tailored to the form in the same compilation unit as the local assembly
kernel, which can therefore be inlined and leads to parallel loops running
with significantly less overhead.

Choosing Python as the main language of implementation is shown to
not negatively affect performance, until the strong scaling limit is hit and
sequential overheads have a measureable effect. This is to be expected
since Firedrake and PyOP2 implement performance critical library code
in Cython, which has minimal overhead compared to native C or C++.
Computations over mesh entities are always executed as PyOP2 parallel
loops and therefore run in natively compiled code, generated specifically
for the platform and problem.

144

Chapter 7

Conclusions

In this chapter, a summary of the main contributions of this thesis is given
and the way these contributions support the thesis statement from Section
1.1 is examined. Controversial implementation choices are discussed and
an outlook of planned and potential future work are given.

7.1 Summary

In this thesis the design and composition of two abstraction layers, PyOP2
and Firedrake, for the portable solution of partial differential equations us-
ing the finite element method on unstructured meshes has been presented.
It has been argued that this composition of domain-specific abstractions
is the key to computationally efficient, maintainable and composable sci-
entific applications.

Computational efficiency for a range of different finite element prob-
lems ranging from stationary over time dependent to non-linear problems
on mixed function spaces has been demonstrated in Chapter 6. Firedrake
has been proven to be competitive and in many instances faster compared
to the best available alternative, the DOLFIN/FEniCS tool chain, for both
single core and parallel runs. This efficiency is achieved primarily by us-
ing PyOP2 as the execution layer for all computations over the mesh, in
particular local assembly. The PyOP2 parallel loop construct, described in
Section 4.1.3, executes a computational kernel over the mesh in natively
compiled and optimised code with very low overhead.

The PyOP2/Firedrake tool chain has a very maintainable code base

145

which is relatively small compared to most fully featured finite element
frameworks implemented as C++ or Fortran libraries such as DOLFIN or
Fluidity, described in Sections 3.2.1 and 3.1.4 respectively. PyOP2 con-
sists of only about 9,000 source lines of Python and Cython, Firedrake
of about 5,000. This compact code base is achieved to a great extent by
reusing tools and solutions established in the scientific community, such
as the FEniCS components UFL, FFC and FIAT, the PETSc toolkit as well
as PyCUDA and PyOpenCL. Python as a very high-level, accessible and
interpreted language chosen for the implementation plays another impor-
tant role for maintainability. There is no need to maintain a build system
or an interface layer to expose a C++ or Fortran library to Python.

Composability is a main driver in the design of Firedrake. In Chap-
ter 5 it has been shown how high-level constructs used in Firedrake are
transformed and expressed in terms of the PyOP2 and PETSc abstrac-
tions. With PyOP2 as the flexible execution layer, Firedrake users have
the opportunity to formulate computations not expressible in UFL as cus-
tom kernels to be executed over the mesh, thereby escaping the abstrac-
tion. Firedrake and applications built on top of it are therefore readily
extendable with non finite element features. Python as the language of
implementation all the way down to the level of generated code allows
an application built on top of Firedrake to easily access and manipulate
data structures, which are implemented in terms of PyOP2 and PETSc
abstractions, As described in Section 5.1. The underlying lower level data
structures can be extracted and manipulated if needed.

PyOP2 itself is highly composable, accepting and exposing data as Num-
Py arrays, which can be manipulated outside of a PyOP2 context using
other tools from the vast scientific Python ecosystem interoperating with
NumPy data types. Furthermore, the parallel loop interface is entirely
agnostic to the kinds of kernels and computations to be executed as long
as the constraints laid out in Chapter 4 are fulfilled. This opens up the
space for extending Firedrake and applications built on top of it with non
finite element features while retaining the portability afforded by PyOP2
and shows that PyOP2 is suitable as a building block in a wide range of
applications operating on unstructured data.

Extensibility of the tool chain has been demonstrated by the contribu-
tions of the support for extruded meshes and the COFFEE AST optimiser.

146

Unified Form
Language (UFL)

PyOP2
Interface

modified
FFC

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

Problem definition
in FEM weak form

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake
Interface

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

FIAT

parallel
loop

parallel
loop

COFFEE
AST optimizer

data structures
(Set, Map, Dat)

Domain
specialist:
mathematical
model using
FEM

Numerical
analyst:
generation of
FEM kernels

Domain
specialist:
mathematical
model on un-
structured grid

Parallel
programming
expert:
hardware
architectures,
optimization

Expert for each layer

Figure 7.1: Users with different background and expertise can work on different aspects
of the Firedrake/PyOP2 tool chain.

The decoupling of the Firedrake finite element layer from the PyOP2
parallel computation layer allows scientists of varying backgrounds and
expertise to collaborate effectively, use and contribute to different aspects
of the tool chain without having to be experts in all aspects of the imple-
mentation. As shown in Figure 7.1, the two main entry points for users
of the Firedrake/PyOP2 tool chain are the Firedrake interface, for domain
scientists who want to solve partial differential equations with the finite
element method, and the PyOP2 interface, for those who want to execute
custom kernels over the mesh. Contributors to Firedrake do not need
to be concerned with the efficient execution of assembly kernels or with
parallelism, since both of these are handled by PyOP2 and PETSc. A con-
tributor to PyOP2 on the other hand does not need to be familiar with the
finite element method, since from PyOP2’s perspective, a local assembly
kernel is “just another” kernel that can be treated as a black box. Clearly
separating and encapsulating those responsibilities with two abstraction
layers is not only beneficial for computational efficiency as demonstrated
but also for the productivity of scientists working with them.

147

7.2 Discussion

In this section, a number of controversial implementation choices as well
as current limitations of the Firedrake/PyOP2 tool chain are discussed.

Firedrake currently fully supports the PyOP2 sequential and OpenMP
CPU backends in combination with MPI. Accelerators are not yet fully
supported, which is partly due to missing or incomplete support in linear
algebra libraries. As described in Section 5.6, Firedrake uses the PETSc
SNES interfaces for solving linear and non-linear systems. While PETSc
supports solving linear systems on CUDA and OpenCL devices via its in-
terfaces to Cusp [Bell et al., 2014] and ViennaCL [Rupp et al., 2010], there
was no interface for global matrix assembly from a GPU kernel at the time
of writing. Knepley and Terrel [2013] do however acknowledge the poten-
tial of finite element integration on GPUs. To be able to support GPU
assembly, PyOP2 implements its own linear algebra backend for CUDA
using Cusp as described in Section 4.6.4, which does not presently sup-
port distributed parallel matrices and solvers and mixed types. Further-
more, the range of linear solvers and preconditioners is limited to those
supported by Cusp, which is only a subset of PETSc’s functionality.

Since PyOP2 is a runtime code generation framework, a full Python
environment as well as a compiler suitable for the target platform need
to be available on each compute node. This can be a limitation in certain
high performance computing environments, where no suitable Python en-
vironment is available or compilation on backend compute nodes is not
possible. The requirement for loading a large number of dynamic shared
objects on Python interpreter startup has been identified by Frings et al.
[2013] as a potential bottleneck for scalability on shared file systems. How-
ever, these limitations are not specific to PyOP2 or Firedrake and the sci-
entific community has strong incentives to improve scalability of Python
applications, from which both would immediately benefit.

As described in Section 4.8, PyOP2 represents the block structure of ma-
trices arising from mixed systems with a PETSc MATNEST [Balay et al.,
2013, Section 3.1.3], which consists of separately stored nested submatri-
ces. In combination with the approach of splitting mixed forms, detailed
in Section 5.2.4, assembling into such a nested structure greatly simpli-
fies the design of the code generation infrastructure. Each submatrix can

148

be independently targeted, which allows using the same code path as for
assembling a regular non-mixed problem. Furthermore, the implementa-
tion of fieldsplit preconditioners presented in Section 5.6.5 is simplified
and the large memory cost of extracting submatrices is avoided, which
can be a significant performance advantage when solving large systems.

7.3 Future Work

In the following, a number of areas of planned and potential future work
building on and extending Firedrake and PyOP2 are identified.

7.3.1 Implementation of Fluidity Models on Top of Firedrake

Firedrake has reached a level of maturity and feature parity with DOLFIN
which make it suitable for third parties to use and build upon. Jacobs and
Piggott [2014] in the Applied Modelling and Computation Group (AMCG)
at Imperial College have started working on porting models implemented
in the Fluidity CFD code described in Section 3.1.4 to Firedrake1. Previ-
ously, adding a new model required contributors to be familiar with and
modify different parts of the Fluidity Fortran library, while making sure
none of the existing functionality is negatively affected. Building upon the
high-level interface provided by Firedrake is an enormous productivity
gain for Fluidity developers, who are able to implement and test models
as independent modules in a matter of days. Features of the model not
expressible in UFL can be added as custom kernels and directly executed
on the PyOP2 level. At the same time, the Fluidity community can take
advantage of the portability offered by Firedrake and immediately benefit
from new features or performance improvements in the tool chain. Fluid-
ity users not familiar with Python can continue to configure these models
using the familiar graphical user interface Diamond, interfaced through
the Python bindings to the SPUD library [Ham et al., 2009].

7.3.2 Automated Derivation of Adjoints

The automated derivation of the adjoint of a forward model implemented
in the DOLFIN Python interface is enabled by dolfin-adjoint [Farrell et al.,

1Project repository: https://github.com/firedrakeproject/firedrake-fluids

149

https://github.com/firedrakeproject/firedrake-fluids

2013]. This automation is achieved by making use of the high-level sym-
bolic representation of the problem and annotates the temporal structure
of the model at runtime. The adjoint variational forms are derived sym-
bolically and the FEniCS form compiler is used to generate assembly ker-
nels for the derived adjoint model. This approach naturally translates
when applying dolfin-adjoint to Firedrake, which exposes a DOLFIN-
compatible API such that hooks can put in place in the same way. A
proof-of-concept implementation of firedrake-adjoint, dolfin-adjoint ap-
plied to Firedrake, only required minimal changes on either side. This
implementation has only been lightly tested and cannot yet be considered
robust, however future work on this integration is planned.

To be able to make use of the full Firedrake functionality including
user-defined parallel loops, it is necessary to also put hooks in place to
differentiate custom kernels not provided by FFC. While it may be feasible
to apply automatic differentiation to the C kernel code, a more promising
approach is a linearisation and derivation of the adjoint on the level of the
COFFEE abstract syntax tree.

7.3.3 Geometric Multigrid Methods

A feature currently in development is support for geometric multigrid
and, as a prerequisite, parallel uniform mesh refinement and coarsening
to be able to implement restriction and prolongation operators. This work
is being used to construct a matrix-free multigrid preconditioner for the
shallow water pressure correction equation. The equations were discre-
tised using both DG0 + RT0 and DG1 + BDFM1 mixed function spaces.
Preliminary benchmarks obtained up to 23% of the achievable STREAM
bandwidth on an ARCHER compute node [Mueller et al., 2014].

7.3.4 Scalability of Firedrake and LLVM Code Generation

An evaluation of the scalability of Firedrake to very large core counts is
planned on the UK national supercomputing facility Archer. A potential
issue is the need to call a vendor compiler for the just-in-time compilation
of code on all the backend nodes and compiling a shared object file that
needs to be written to and re-read from disk on a shared file system.

To overcome this issue, an investigation of using in-memory compila-

150

tion with LLVM [Lattner and Adve, 2004] is planned, replacing the current
CPU code generation and runtime compilation infrastructure of PyOP2
with a backend that builds an LLVM intermediate representation (IR) di-
rectly, which is compiled to machine code in memory and entirely avoids
having to touch the file system. This increases both the scalability on
current systems and reduces porting efforts to future HPC systems.

7.3.5 Firedrake on Accelerators

Fully supporting Firedrake on accelerators and demonstrating performance
portability over a broader range of architectures is another priority on the
roadmap. A promising strategy in particular on GPU architectures are
matrix-free methods, where no sparse matrix is explicitly assembled. In-
stead, a callback function for evaluating the sparse matrix vector product
(SpMV), used as a black box routine by iterative solvers, is provided. One
possible implementation that has been been shown by Markall et al. [2012]
to outperform matrix assembly on GPU architectures is the Local Matrix
Approach (LMA), where the local element matrices are used directly in
the SpMV instead of first assembling a global sparse matrix.

PETSc has extensive support for matrix-free methods both for its linear
and non-linear solvers [Balay et al., 2013, Section 3.3, 5.5]. However, most
preconditioners are implemented to work on matrices and can therefore
not be used with matrix-free methods, where custom preconditioners have
to be implemented.

7.3.6 Adaptive Mesh Refinement

Adaptive mesh refinement and coarsening, where the mesh topology and
geometry are dynamically changed by splitting or combining cells based
on some error indicator computed over the mesh, is essential for achiev-
ing good performance in certain types of applications. PyOP2 assumes a
fixed, immutable mesh topology and dynamically changing the sizes of
data structures is currently not supported. Adapting the mesh requires
creating new versions of PyOP2 data structures with different sizes and
efficiently transferring data from the old to the new mesh. A promis-
ing implementation choice would be the integration of PRAgMaTIc, the
Parallel anisotRopic Adaptive Mesh ToolkIt [Rokos et al., 2011], with the

151

PyOP2/Firedrake tool chain. PRAgMaTIc has already been interfaced to
DOLFIN and the integration with PETSc DMPlex is on the roadmap.

152

Bibliography

Martin S. Alnaes, Anders Logg, Kent-Andre Mardal, Ola Skavhaug, and
Hans Petter Langtangen. Unified framework for finite element assembly. In-
ternational Journal of Computational Science and Engineering, 4(4):231–244, 2009.

Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and
Garth N. Wells. Unified form language: A domain-specific language for weak
formulations of partial differential equations. ACM Trans. Math. Softw., 40(2):
9:1–9:37, March 2014. doi: 10.1145/2566630.

Martin Sandve Alnæs. UFL: a finite element form language. In Anders Logg,
Kent-Andre Mardal, Garth Wells, Timothy J. Barth, Michael Griebel, David E.
Keyes, Risto M. Nieminen, Dirk Roose, and Tamar Schlick, editors, Automated
Solution of Differential Equations by the Finite Element Method, volume 84 of Lec-
ture Notes in Computational Science and Engineering, pages 303–338. Springer
Berlin Heidelberg, 2012.

Martin Sandve Alnæs, Anders Logg, and Kent-Andre Mardal. UFC: a finite
element code generation interface. In Anders Logg, Kent-Andre Mardal, and
Garth Wells, editors, Automated Solution of Differential Equations by the Finite
Element Method, number 84 in Lecture Notes in Computational Science and
Engineering, pages 283–302. Springer Berlin Heidelberg, January 2012.

Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster.
MUMPS: A general purpose distributed memory sparse solver. In Tor Sørevik,
Fredrik Manne, Assefaw Hadish Gebremedhin, and Randi Moe, editors, Ap-
plied Parallel Computing. New Paradigms for HPC in Industry and Academia, num-
ber 1947 in Lecture Notes in Computer Science, pages 121–130. Springer Berlin
Heidelberg, January 2001. doi: 10.1007/3-540-70734-4 16.

Stefan Andersson. Cray XC30 architecture overview, January 2014.

153

URL http://www.archer.ac.uk/training/courses/craytools/pdf/

architecture-overview.pdf.

Applied Modelling and Computation Group (AMCG). Fluidity manual
4.1.11, November 2013. URL http://launchpad.net/fluidity/4.1/4.1.11/

+download/fluidity-manual-4.1.11.pdf.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley,
L. Curfman McInnes, B. Smith, and H. Zhang. PETSc users manual revision
3.4, May 2013. URL http://www-unix.mcs.anl.gov/petsc/petsc-current/

docs/manual.pdf.

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.
Efficient management of parallelism in object-oriented numerical software li-
braries. In Erlend Arge, Are Magnus Bruaset, and Hans Petter Langtangen, ed-
itors, Modern Software Tools for Scientific Computing, pages 163–202. Birkhäuser
Boston, January 1997.

W. Bangerth, R. Hartmann, and G. Kanschat. deal.II - a general-purpose object-
oriented finite element library. ACM Trans. Math. Softw., 33(4), August 2007.
doi: 10.1145/1268776.1268779.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander. A generic grid interface for parallel and adaptive
scientific computing. part II: implementation and tests in DUNE. Computing,
82(2-3):121–138, July 2008a. doi: 10.1007/s00607-008-0004-9.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
O. Sander. A generic grid interface for parallel and adaptive scientific com-
puting. part i: abstract framework. Computing, 82(2-3):103–119, July 2008b.
doi: 10.1007/s00607-008-0003-x.

D. M. Beazley. Automated scientific software scripting with SWIG. Future Gener-
ation Computer Systems, 19(5):599–609, July 2003. doi: 10.1016/S0167-739X(02)
00171-1.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython:
The best of both worlds. Computing in Science Engineering, 13(2):31–39, 2011.
doi: 10.1109/MCSE.2010.118.

Nathan Bell, Steven Dalton, Filipe Maia, and Michael Garland. CUSP : A c++
templated sparse matrix library, 2014. URL http://cusplibrary.github.io/.

Markus Blatt and Peter Bastian. The iterative solver template library. In
Bo Kågström, Erik Elmroth, Jack Dongarra, and Jerzy Waśniewski, editors,

154

http://www.archer.ac.uk/training/courses/craytools/pdf/architecture-overview.pdf
http://www.archer.ac.uk/training/courses/craytools/pdf/architecture-overview.pdf
http://launchpad.net/fluidity/4.1/4.1.11/+download/fluidity-manual-4.1.11.pdf
http://launchpad.net/fluidity/4.1/4.1.11/+download/fluidity-manual-4.1.11.pdf
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://cusplibrary.github.io/

Applied Parallel Computing. State of the Art in Scientific Computing, number 4699
in Lecture Notes in Computer Science, pages 666–675. Springer Berlin Heidel-
berg, January 2007.

A. Bolis, C. D. Cantwell, R. M. Kirby, and S. J. Sherwin. From h to p efficiently:
Optimal implementation strategies for explicit time-dependent problems using
the spectral/hp element method. 2013. URL http://www2.imperial.ac.uk/

ssherw/spectralhp/papers/IJNMF-BoCaKiSh-13.pdf. submitted.

J. Bosch, D. Kay, M. Stoll, and A. Wathen. Fast solvers for Cahn–Hilliard inpaint-
ing. SIAM Journal on Imaging Sciences, 7(1):67–97, 2014. doi: 10.1137/130921842.

A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathe-
matics of Computation, pages 333–390, 1977.

Tobias Brandvik and Graham Pullan. SBLOCK: a framework for efficient stencil-
based PDE solvers on multi-core platforms. In Proceedings of the 2010 10th
IEEE International Conference on Computer and Information Technology, CIT ’10,
page 1181–1188, Washington, DC, USA, 2010. IEEE Computer Society. doi:
10.1109/CIT.2010.214.

Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element
methods. Springer, New York NY, 3rd ed. edition, 2008.

Franco Brezzi, Jim Douglas Jr, and L. D. Marini. Two families of mixed finite
elements for second order elliptic problems. Numerische Mathematik, 47(2):217–
235, June 1985. doi: 10.1007/BF01389710.

C. D. Cantwell, S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly. From h to p
efficiently: Selecting the optimal spectral/hp discretisation in three dimen-
sions. Mathematical Modelling of Natural Phenomena, 6(03):84–96, 2011a. doi:
10.1051/mmnp/20116304.

C.D. Cantwell, S.J. Sherwin, R.M. Kirby, and P.H.J. Kelly. From h to p efficiently:
Strategy selection for operator evaluation on hexahedral and tetrahedral ele-
ments. Computers & Fluids, 43(1):23–28, April 2011b. doi: 16/j.compfluid.2010.
08.012.

M. Christen, O. Schenk, and H. Burkhart. PATUS: a code generation and autotun-
ing framework for parallel iterative stencil computations on modern microar-
chitectures. In Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 676 –687, May 2011. doi: 10.1109/IPDPS.2011.70.

Philippe G. Ciarlet. Numerical analysis of the finite element method. Presses de
l’Université de Montréal, 1976.

155

http://www2.imperial.ac.uk/ssherw/spectralhp/papers/IJNMF-BoCaKiSh-13.pdf
http://www2.imperial.ac.uk/ssherw/spectralhp/papers/IJNMF-BoCaKiSh-13.pdf

Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet,
Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel Chavarrı́a-Miranda.
An evaluation of global address space languages: Co-array fortran and unified
parallel c. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’05, page 36–47, New York, NY, USA,
2005. ACM. doi: 10.1145/1065944.1065950.

Krzysztof Czarnecki, Ulrich W Eisenecker, Robert Glück, David Vandevoorde,
and Todd L Veldhuizen. Generative programming and active libraries. In Se-
lected Papers from the International Seminar on Generic Programming, page 25–39,
London, UK, 2000. Springer-Verlag. ACM ID: 724187.

Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. Par-
allel distributed computing using python. Advances in Water Resources, 34(9):
1124–1139, September 2011. doi: 10.1016/j.advwatres.2011.04.013.

Timothy A. Davis. Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern
multifrontal method. ACM Trans. Math. Softw., 30(2):196–199, 2004. doi: 10.
1145/992200.992206.

Andreas Dedner, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. A generic
interface for parallel and adaptive discretization schemes: abstraction princi-
ples and the dune-fem module. Computing, 90(3-4):165–196, November 2010.
doi: 10.1007/s00607-010-0110-3.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat
Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Du-
raisamy, Eric Darve, Juan Alonso, and Pat Hanrahan. Liszt: a domain spe-
cific language for building portable mesh-based PDE solvers. In Proceedings of
2011 International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’11, page 9:1–9:12, New York, NY, USA, 2011. ACM. doi:
10.1145/2063384.2063396.

DUNE Team. DUNE: distributed and unified numerics environment, January
2014. URL http://www.dune-project.org/.

Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang. The design and im-
plementation of hypre, a library of parallel high performance preconditioners.
In Are Magnus Bruaset and Aslak Tveito, editors, Numerical Solution of Par-
tial Differential Equations on Parallel Computers, number 51 in Lecture Notes in
Computational Science and Engineering, pages 267–294. Springer Berlin Hei-
delberg, January 2006. doi: 10.1007/3-540-31619-1 8.

P. Farrell, D. Ham, S. Funke, and M. Rognes. Automated derivation of the ad-

156

http://www.dune-project.org/

joint of high-level transient finite element programs. SIAM Journal on Scientific
Computing, 35(4):C369–C393, January 2013. doi: 10.1137/120873558.

Matteo Frigo and Volker Strumpen. Cache oblivious stencil computations. In
Proceedings of the 19th annual international conference on Supercomputing, ICS ’05,
page 361–366, New York, NY, USA, 2005. ACM. doi: 10.1145/1088149.1088197.

Matteo Frigo and Volker Strumpen. The memory behavior of cache oblivious
stencil computations. The Journal of Supercomputing, 39(2):93–112, February
2007. doi: 10.1007/s11227-007-0111-y.

Wolfgang Frings, Dong H. Ahn, Matthew LeGendre, Todd Gamblin, Bronis R.
de Supinski, and Felix Wolf. Massively parallel loading. In Proceedings of the
27th International ACM Conference on International Conference on Supercomputing,
ICS ’13, page 389–398, New York, NY, USA, 2013. ACM. doi: 10.1145/2464996.
2465020.

Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element
mesh generator with built-in pre- and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309–1331, September 2009.
doi: 10.1002/nme.2579.

M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. J. Kelly. Perfor-
mance analysis and optimization of the OP2 framework on many-core archi-
tectures. The Computer Journal, 55(2):168–180, January 2012. doi: 10.1093/
comjnl/bxr062.

M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and I. Reguly. Designing
OP2 for GPU architectures. Journal of Parallel and Distributed Computing, 73(11):
1451–1460, November 2013. doi: 10.1016/j.jpdc.2012.07.008.

D. A. Ham, P. E. Farrell, G. J. Gorman, J. R. Maddison, C. R. Wilson, S. C. Kramer,
J. Shipton, G. S. Collins, C. J. Cotter, and M. D. Piggott. Spud 1.0: generalising
and automating the user interfaces of scientific computer models. Geosci. Model
Dev., 2(1):33–42, March 2009. doi: 10.5194/gmd-2-33-2009.

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S.
Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An
overview of the trilinos project. ACM Trans. Math. Softw., 31(3):397–423, 2005.
doi: 10.1145/1089014.1089021.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Stand, 49(6):409–436, 1952.

157

C. T. Jacobs and M. D. Piggott. Firedrake-fluids v0.1: numerical modelling of
shallow water flows using a performance-portable automated solution frame-
work. Geosci. Model Dev. Discuss., 7(4):5699–5738, August 2014. ISSN 1991-962X.
doi: 10.5194/gmdd-7-5699-2014.

S. Kamil, Cy Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning frame-
work for parallel multicore stencil computations. In 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS), pages 1 –12, April 2010.
doi: 10.1109/IPDPS.2010.5470421.

OpenCL Working Group Khronos. The OpenCL specification, version 2.0,
November 2013. URL http://www.khronos.org/registry/cl/specs/opencl-2.

0.pdf.

R. C. Kirby, M. G. Knepley, and L. R. Scott. Evaluation of the action of finite
element operators. Technical Report TR–2004–07, University of Chicago, De-
partment of Computer Science, 2004.

R. C. Kirby, A. Logg, L. R. Scott, and A. R. Terrel. Topological optimization of
the evaluation of finite element matrices. SIAM J. Sci. Comput., 28(1):224–240,
2006.

Robert C. Kirby. Algorithm 839: FIAT, a new paradigm for computing finite
element basis functions. ACM Trans. Math. Softw., 30(4):502–516, 2004. doi:
10.1145/1039813.1039820.

Robert C. Kirby. FIAT: numerical construction of finite element basis functions.
In Anders Logg, Kent-Andre Mardal, and Garth Wells, editors, Automated So-
lution of Differential Equations by the Finite Element Method, number 84 in Lec-
ture Notes in Computational Science and Engineering, pages 247–255. Springer
Berlin Heidelberg, January 2012.

Robert C. Kirby and Anders Logg. A compiler for variational forms. ACM Trans.
Math. Softw., 32(3):417–444, September 2006. doi: 10.1145/1163641.1163644.

Robert C. Kirby and Anders Logg. Efficient compilation of a class of variational
forms. ACM Trans. Math. Softw., 33(3), August 2007. doi: 10.1145/1268769.
1268771.

Robert C. Kirby and Anders Logg. The finite element method. In Anders Logg,
Kent-Andre Mardal, and Garth Wells, editors, Automated Solution of Differential
Equations by the Finite Element Method, number 84 in Lecture Notes in Com-
putational Science and Engineering, pages 77–94. Springer Berlin Heidelberg,
January 2012a.

158

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

Robert C. Kirby and Anders Logg. Tensor representation of finite element vari-
ational forms. In Anders Logg, Kent-Andre Mardal, and Garth Wells, edi-
tors, Automated Solution of Differential Equations by the Finite Element Method,
number 84 in Lecture Notes in Computational Science and Engineering,
pages 159–162. Springer Berlin Heidelberg, January 2012b. doi: 10.1007/
978-3-642-23099-8 8.

Robert C Kirby and L. Ridgway Scott. Geometric optimization of the evaluation
of finite element matrices. SIAM Journal on Scientific Computing, 29(2):827–841
(electronic), 2007.

Robert C. Kirby, Matthew Knepley, Anders Logg, and L. Ridgway Scott. Op-
timizing the evaluation of finite element matrices. SIAM Journal on Scientific
Computing, 27(3):741–758, January 2005. doi: 10.1137/040607824.

Robert C. Kirby, Anders Logg, Marie E. Rognes, and Andy R. Terrel. Com-
mon and unusual finite elements. In Anders Logg, Kent-Andre Mardal, and
Garth Wells, editors, Automated Solution of Differential Equations by the Finite
Element Method, number 84 in Lecture Notes in Computational Science and
Engineering, pages 95–119. Springer Berlin Heidelberg, January 2012. doi:
10.1007/978-3-642-23099-8 3.

Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and
Ahmed Fasih. PyCUDA and PyOpenCL: a scripting-based approach to GPU
run-time code generation. Parallel Computing, 38(3):157–174, March 2012. doi:
10.1016/j.parco.2011.09.001.

Matthew Knepley. The portable extensible toolkit for scientific computing -
PETSc tutorial. Orsay, France, June 2013. URL http://calcul.math.cnrs.

fr/IMG/pdf/ParisTutorial.pdf.

Matthew G. Knepley and Andy R. Terrel. Finite element integration on GPUs.
ACM Trans. Math. Softw., 39(2):10:1–10:13, February 2013. doi: 10.1145/
2427023.2427027.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-directed and Runtime Opti-
mization, CGO ’04, page 75–, Washington, DC, USA, 2004. IEEE Computer
Society.

Anders Logg. Automating the finite element method. Archives of Com-
putational Methods in Engineering, 14(2):93–138, June 2007. doi: 10.1007/
s11831-007-9003-9.

159

http://calcul.math.cnrs.fr/IMG/pdf/ParisTutorial.pdf
http://calcul.math.cnrs.fr/IMG/pdf/ParisTutorial.pdf

Anders Logg and Garth N. Wells. DOLFIN: automated finite element computing.
ACM Trans. Math. Softw., 37(2):1–28, 2010. doi: 10.1145/1731022.1731030.

Anders Logg, Kent-Andre Mardal, and Garth N. Wells, editors. Automated So-
lution of Differential Equations by the Finite Element Method, volume 84 of Lec-
ture Notes in Computational Science and Engineering. Springer Berlin Heidelberg,
2012a.

Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Finite element assem-
bly. In Anders Logg, Kent-Andre Mardal, and Garth Wells, editors, Automated
Solution of Differential Equations by the Finite Element Method, number 84 in Lec-
ture Notes in Computational Science and Engineering, pages 141–146. Springer
Berlin Heidelberg, January 2012b. doi: 10.1007/978-3-642-23099-8 6.

Anders Logg, Garth N. Wells, and Johan Hake. DOLFIN: a C++/Python finite
element library. In Anders Logg, Kent-Andre Mardal, and Garth Wells, ed-
itors, Automated Solution of Differential Equations by the Finite Element Method,
number 84 in Lecture Notes in Computational Science and Engineering, pages
173–225. Springer Berlin Heidelberg, January 2012c.

Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. FFC: the
FEniCS form compiler. In Anders Logg, Kent-Andre Mardal, and Garth Wells,
editors, Automated Solution of Differential Equations by the Finite Element Method,
number 84 in Lecture Notes in Computational Science and Engineering, pages
227–238. Springer Berlin Heidelberg, January 2012d.

Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor
Bercea, J. Ramanujam, David A. Ham, and Paul H. J. Kelly. COFFEE: an opti-
mizing compiler for finite element local assembly. 2014. submitted.

Graham R. Markall, Andras Slemmer, David A. Ham, Paul H.J. Kelly, Chris D.
Cantwell, and Spencer J. Sherwin. Finite element assembly strategies on multi-
core and many-core architectures. International Journal for Numerical Methods in
Fluids, 2012. doi: 10.1002/fld.3648.

Graham R. Markall, Florian Rathgeber, Lawrence Mitchell, Nicolas Loriant, Carlo
Bertolli, David A. Ham, and Paul H. J. Kelly. Performance-portable finite el-
ement assembly using PyOP2 and FEniCS. In Julian Martin Kunkel, Thomas
Ludwig, and Hans Werner Meuer, editors, 28th International Supercomputing
Conference, ISC 2013, Leipzig, Germany, June 16-20, 2013. Proceedings, number
7905 in Lecture Notes in Computer Science, pages 279–289. Springer Berlin
Heidelberg, 2013. doi: 10.1007/978-3-642-38750-0 21.

Graham Robert Markall. Multilayered Abstractions for Partial Differential Equations.
PhD thesis, Imperial College, 2013.

160

John D. McCalpin. A survey of memory bandwidth and machine balance in
current high performance computers. IEEE TCCA Newsletter, page 19–25, 1995.

William C. Mills-Curran, Amy P. Gilkey, and Dennis P. Flanagan. EXODUS: a
finite element file format for pre-and postprocessing. Technical report, Sandia
National Labs., Albuquerque, NM (USA), 1988.

Lawrence Mitchell. Partitioning and numbering meshes for efficient MPI-
parallel execution in PyOP2. In FEniCS’13 Workshop, University of
Cambridge, March 2013. URL http://fenicsproject.org/pub/workshops/

fenics13/slides/Mitchell.pdf.

Eike H. Mueller, Colin J. Cotter, David A. Ham, Lawrence Mitchell, and Robert
Schleichl. Efficient multigrid solvers for mixed finite element discretisations
in NWP models, October 2014. URL http://www.ecmwf.int/sites/default/

files/HPC-WS-Mueller.pdf.

J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.
doi: 10.1007/BF01396415.

J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math., 50(1):
57–81, 1986. doi: 10.1007/BF01389668.

NVIDIA. Kepler GK110 compute architecture white paper. Technical Report v1.0,
2012.

NVIDIA. CUDA c programming guide v5.5, July 2013. URL http://docs.

nvidia.com/cuda/cuda-c-programming-guide/.

Christoph Pflaum. Expression templates for partial differential equations. Com-
puting and Visualization in Science, 4(1):1–8, November 2001. doi: 10.1007/
s007910100051.

M. D. Piggott, G. J. Gorman, C. C. Pain, P. A. Allison, A. S. Candy, B. T. Mar-
tin, and M. R. Wells. A new computational framework for multi-scale ocean
modelling based on adapting unstructured meshes. International Journal for
Numerical Methods in Fluids, 56(8):1003–1015, 2008. doi: 10.1002/fld.1663.

Diane Poirier, Steven Allmaras, Douglas McCarthy, Matthew Smith, and Francis
Enomoto. The CGNS system. In 29th AIAA, Fluid Dynamics Conference. Ameri-
can Institute of Aeronautics and Astronautics, 1998. doi: 10.2514/6.1998-3007.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Ama-
rasinghe, and Frédo Durand. Decoupling algorithms from schedules for
easy optimization of image processing pipelines. ACM Trans. Graph., 31(4):
32:1–32:12, July 2012. doi: 10.1145/2185520.2185528.

161

http://fenicsproject.org/pub/workshops/fenics13/slides/Mitchell.pdf
http://fenicsproject.org/pub/workshops/fenics13/slides/Mitchell.pdf
http://www.ecmwf.int/sites/default/files/HPC-WS-Mueller.pdf
http://www.ecmwf.int/sites/default/files/HPC-WS-Mueller.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: a language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’13, page 519–530, New York, NY, USA, 2013.
ACM. doi: 10.1145/2462156.2462176.

Florian Rathgeber, Graham R. Markall, Lawrence Mitchell, Nicolas Loriant,
David A. Ham, Carlo Bertolli, and Paul H.J. Kelly. PyOP2: a high-level frame-
work for performance-portable simulations on unstructured meshes. In High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:, pages 1116–1123, 2012. doi: 10.1109/SC.Companion.2012.134.

P.-A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order
elliptic problems. In Mathematical aspects of finite element methods (Proc. Conf.,
Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pages 292–315. Lecture Notes
in Math., Vol. 606. Springer, Berlin, 1977.

James Reinders. An overview of programming for intel xeon processors and intel
xeon phi coprocessors. Technical report, Intel, 2012.

Marie E. Rognes. Mixed formulation for poisson equation, November 2012.
URL http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/

documented/mixed-poisson/python/documentation.html.

Marie E. Rognes, David A. Ham, Colin J. Cotter, and Andrew T. T. McRae. Au-
tomating the solution of PDEs on the sphere and other manifolds in FEniCS
1.2. Geoscientific Model Development Discussions, 6(3):3557–3614, July 2013. doi:
10.5194/gmdd-6-3557-2013.

Georgios Rokos, Gerard Gorman, and Paul H. J. Kelly. Accelerating anisotropic
mesh adaptivity on nVIDIA’s CUDA using texture interpolation. In Emmanuel
Jeannot, Raymond Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel
Processing, number 6853 in Lecture Notes in Computer Science, pages 387–398.
Springer Berlin Heidelberg, January 2011. doi: 10.1007/978-3-642-23397-5 38.

Karl Rupp, Florian Rudolf, and Josef Weinbub. ViennaCL-a high level linear
algebra library for GPUs and multi-core CPUs. Proc. GPUScA, page 51–56,
2010.

Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869,
1986.

162

http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/mixed-poisson/python/documentation.html
http://fenicsproject.org/documentation/dolfin/1.4.0/python/demo/documented/mixed-poisson/python/documentation.html

Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh genera-
tor and delaunay triangulator. In Ming C. Lin and Dinesh Manocha, editors,
Applied Computational Geometry Towards Geometric Engineering, number 1148 in
Lecture Notes in Computer Science, pages 203–222. Springer Berlin Heidel-
berg, January 1996. doi: 10.1007/BFb0014497.

J.E. Stone, D. Gohara, and Guochun Shi. OpenCL: a parallel programming stan-
dard for heterogeneous computing systems. Computing in Science & Engineer-
ing, 12(3):66–73, 2010. doi: 10.1109/MCSE.2010.69.

Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and
Charles E. Leiserson. The pochoir stencil compiler. In Proceedings of the 23rd
ACM symposium on Parallelism in algorithms and architectures, SPAA ’11, page
117–128, New York, NY, USA, 2011. ACM. doi: 10.1145/1989493.1989508.

D. Unat, Jun Zhou, Yifeng Cui, S.B. Baden, and Xing Cai. Accelerating a 3D finite-
difference earthquake simulation with a c-to-CUDA translator. Computing in
Science Engineering, 14(3):48 –59, June 2012. doi: 10.1109/MCSE.2012.44.

Didem Unat, Xing Cai, and Scott B. Baden. Mint: realizing CUDA performance in
3D stencil methods with annotated c. In Proceedings of the international conference
on Supercomputing, ICS ’11, page 214–224, New York, NY, USA, 2011. ACM.
doi: 10.1145/1995896.1995932.

Peter E.J. Vos, Spencer J. Sherwin, and Robert M. Kirby. From h to p efficiently:
Implementing finite and spectral/hp element methods to achieve optimal per-
formance for low- and high-order discretisations. Journal of Computational
Physics, 229(13):5161–5181, July 2010. doi: 10.1016/j.jcp.2010.03.031.

Peter E.J. Vos, Claes Eskilsson, Alessandro Bolis, Sehun Chun, Robert M. Kirby,
and Spencer J. Sherwin. A generic framework for time-stepping partial dif-
ferential equations (PDEs): general linear methods, object-oriented implemen-
tation and application to fluid problems. International Journal of Computational
Fluid Dynamics, 25(3):107–125, 2011. doi: 10.1080/10618562.2011.575368.

Joerg Walter and Mathias Koch. Boost basic linear algebra (uBLAS), 2014. URL
http://www.boost.org/libs/numeric/ublas/.

Ilmar M. Wilbers, Kent-Andre Mardal, and Martin S. Alnæs. Instant: just-in-time
compilation of C/C++ in python. In Anders Logg, Kent-Andre Mardal, and
Garth Wells, editors, Automated Solution of Differential Equations by the Finite
Element Method, number 84 in Lecture Notes in Computational Science and
Engineering, pages 257–272. Springer Berlin Heidelberg, January 2012. doi:
10.1007/978-3-642-23099-8 14.

163

http://www.boost.org/libs/numeric/ublas/

Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,
Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,
Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and
Tong Wen. Productivity and performance using partitioned global address
space languages. In Proceedings of the 2007 international workshop on Parallel
symbolic computation, PASCO ’07, page 24–32, New York, NY, USA, 2007. ACM.
doi: 10.1145/1278177.1278183.

Yongpeng Zhang and Frank Mueller. Auto-generation and auto-tuning of 3D
stencil codes on GPU clusters. In Proceedings of the Tenth International Sympo-
sium on Code Generation and Optimization, CGO ’12, page 155–164, New York,
NY, USA, 2012. ACM. doi: 10.1145/2259016.2259037.

Kristian B. Ølgaard and Garth N. Wells. Optimizations for quadrature repre-
sentations of finite element tensors through automated code generation. ACM
Trans. Math. Softw., 37(1):8:1–8:23, January 2010. doi: 10.1145/1644001.1644009.

Kristian B. Ølgaard and Garth N. Wells. Quadrature representation of finite
element variational forms. In Anders Logg, Kent-Andre Mardal, and Garth
Wells, editors, Automated Solution of Differential Equations by the Finite Ele-
ment Method, number 84 in Lecture Notes in Computational Science and
Engineering, pages 147–158. Springer Berlin Heidelberg, January 2012. doi:
10.1007/978-3-642-23099-8 7.

164

	1 Introduction
	1.1 Thesis Statement
	1.2 Overview
	1.3 Technical Contributions
	1.4 Dissemination
	1.5 Thesis Outline

	2 Background
	2.1 The Finite Element Method
	2.1.1 Variational Problems
	2.1.2 Function Spaces
	2.1.3 Mapping from the Reference Element
	2.1.4 The Lagrange Element
	2.1.5 The Discontinuous Lagrange Element
	2.1.6 H(div) and H(curl) Finite Elements
	2.1.7 Assembly
	2.1.8 Quadrature Representation
	2.1.9 Tensor Representation
	2.1.10 Linear Solvers
	2.1.11 Action of a Finite Element Operator

	2.2 Contemporary Parallel Hardware Architectures
	2.2.1 Multi-core and Many-core Architectures
	2.2.2 Contemporary GPU Architectures
	2.2.3 Intel Xeon Phi (Knights Corner)
	2.2.4 Performance Terminology
	2.2.5 Performance Considerations

	2.3 Programming Paradigms for Many-core Platforms
	2.3.1 NVIDIA Compute Unified Device Architecture (CUDA)
	2.3.2 Open Computing Language (OpenCL)
	2.3.3 Partitioned Global Address Space (PGAS) Languages

	2.4 Conclusions

	3 High-level Abstractions in Computational Science
	3.1 Library-based Approaches
	3.1.1 Portable, Extensible Toolkit for Scientific Computation (PETSc)
	3.1.2 deal.ii: A General-Purpose Object-Oriented Finite Element Library
	3.1.3 DUNE: Distributed and Unified Numerics Environment
	3.1.4 Fluidity
	3.1.5 Nektar++

	3.2 FEniCS
	3.2.1 DOLFIN
	3.2.2 UFL
	3.2.3 FFC
	3.2.4 FIAT
	3.2.5 UFC
	3.2.6 Instant

	3.3 OP2
	3.3.1 Key Concepts
	3.3.2 Design

	3.4 Stencil Languages
	3.4.1 Stencil Computations on Structured Meshes
	3.4.2 Halide
	3.4.3 Liszt

	3.5 Conclusions

	4 PyOP2 - A DSL for Parallel Computations on Unstructured Meshes
	4.1 Concepts
	4.1.1 Sets and Mappings
	4.1.2 Data
	4.1.3 Parallel Loops

	4.2 Kernels
	4.2.1 Kernel API
	4.2.2 COFFEE Abstract Syntax Tree Optimiser
	4.2.3 Data Layout
	4.2.4 Local Iteration Spaces

	4.3 Architecture
	4.3.1 Parallel Loops
	4.3.2 Caching
	4.3.3 Multiple Backend Support via Unified API

	4.4 Backends
	4.4.1 Host Backends
	4.4.2 Device Backends

	4.5 Parallel Execution Plan
	4.5.1 Partitioning
	4.5.2 Local Renumbering and Staging
	4.5.3 Colouring

	4.6 Linear Algebra interface
	4.6.1 Sparse Matrix Storage Formats
	4.6.2 Building a Sparsity Pattern
	4.6.3 Matrix Assembly
	4.6.4 GPU Matrix Assembly
	4.6.5 Solving a Linear System
	4.6.6 GPU Linear Algebra
	4.6.7 Vector Operations

	4.7 Distributed Parallel Computations with MPI
	4.7.1 Local Numbering
	4.7.2 Computation-communication Overlap
	4.7.3 Halo exchange
	4.7.4 Distributed Assembly

	4.8 Mixed Types
	4.8.1 Mixed Set, DataSet, Map and Dat
	4.8.2 Block Sparsity and Mat
	4.8.3 Mixed Assembly

	4.9 Comparison with OP2
	4.10 Conclusions

	5 Firedrake - A Portable Finite Element Framework
	5.1 Concepts and Core Constructs
	5.1.1 Functions
	5.1.2 Function Spaces
	5.1.3 Meshes
	5.1.4 Expressing Variational Problems

	5.2 Mixed Function Spaces
	5.2.1 Mixed Formulation for the Poisson Equation
	5.2.2 Mixed Elements, Test and Trial Functions in UFL
	5.2.3 Mixed Systems
	5.2.4 Splitting Mixed Forms
	5.2.5 Simplifying Forms

	5.3 Assembling Expressions
	5.3.1 Expression Compiler
	5.3.2 Expression Splitting
	5.3.3 Expression Code Generation and Evaluation

	5.4 Assembling Forms
	5.4.1 Assembly Kernels
	5.4.2 Assembling Matrices, Vectors and Functionals
	5.4.3 Parallel Loops for Local Assembly Computations

	5.5 Imposing Dirichlet Boundary Conditions
	5.5.1 Assembling Matrices with Boundary Conditions
	5.5.2 Boundary Conditions for Variational Problems
	5.5.3 Boundary Conditions for Linear Systems

	5.6 Solving PDEs
	5.6.1 Solving Non-linear Variational Problems
	5.6.2 Transforming Linear Variational Problems
	5.6.3 Non-linear Solvers
	5.6.4 Solving Pre-assembled Linear Systems
	5.6.5 Preconditioning Mixed Finite Element Systems

	5.7 Comparison with the FEniCS/DOLFIN Tool Chain
	5.8 Conclusions

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Poisson
	6.2.1 Problem Setup
	6.2.2 Results

	6.3 Linear Wave Equation
	6.3.1 Results

	6.4 Cahn-Hilliard
	6.4.1 Problem Setup
	6.4.2 Results

	6.5 Conclusions

	7 Conclusions
	7.1 Summary
	7.2 Discussion
	7.3 Future Work
	7.3.1 Implementation of Fluidity Models on Top of Firedrake
	7.3.2 Automated Derivation of Adjoints
	7.3.3 Geometric Multigrid Methods
	7.3.4 Scalability of Firedrake and LLVM Code Generation
	7.3.5 Firedrake on Accelerators
	7.3.6 Adaptive Mesh Refinement

