
Concurrency: message passing 1
©Magee/Kramer

Chapter 10

Concurrency: message passing 2
©Magee/Kramer

Message Passing

Concepts: synchronous message passing - channel
asynchronous message passing - port

- send and receive / selective receive
rendezvous bidirectional comms - entry

- call and accept ... reply

Models: channel : relabelling, choice & guards
port : message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

Concurrency: message passing 3
©Magee/Kramer

♦ send(e,c) - send the
value of the expression e
to channel c. The process
calling the send operation
is blocked until the
message is received from
the channel.

10.1 Synchronous Message Passing - channel

Channel c
Sender
send(e,c)

Receiver
v=receive(c)

♦ v = receive(c) - receive
a value into local variable v
from channel c. The
process calling the receive
operation is blocked
waiting until a message is
sent to the channel.

cf. distributed assignment v = e

one-to-one

Concurrency: message passing 4
©Magee/Kramer

synchronous message passing - applet

A sender
communicates
with a receiver
using a single
channel.

The sender
sends a
sequence of
integer values
from 0 to 9 and
then restarts at
0 again.

Channel chan = new Channel();
tx.start(new Sender(chan,senddisp));
rx.start(new Receiver(chan,recvdisp));

Instances of SlotCanvasInstances of ThreadPanel

Concurrency: message passing 5
©Magee/Kramer

Java implementation - channel

The
implementation
of Channel is a
monitor that has
synchronized
access methods
for send and
receive.

class Channel extends Selectable {
Object chann = null;

public synchronized void send(Object v)
throws InterruptedException {

chann = v;
signal();
while (chann != null) wait();

}

public synchronized Object receive()
throws InterruptedException {

block(); clearReady(); //part of Selectable
Object tmp = chann; chann = null;
notifyAll(); //could be notify()
return(tmp);

}
}

Selectable is
described later. Concurrency: message passing 6

©Magee/Kramer

Java implementation - sender

class Sender implements Runnable {
private Channel chan;
private SlotCanvas display;
Sender(Channel c, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { int ei = 0;

while(true) {
display.enter(String.valueOf(ei));
ThreadPanel.rotate(12);
chan.send(new Integer(ei));
display.leave(String.valueOf(ei));
ei=(ei+1)%10; ThreadPanel.rotate(348);

}
} catch (InterruptedException e){}

}
}

Concurrency: message passing 7
©Magee/Kramer

Java implementation - receiver

class Receiver implements Runnable {
private Channel chan;
private SlotCanvas display;
Receiver(Channel c, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { Integer v=null;

while(true) {
ThreadPanel.rotate(180);
if (v!=null) display.leave(v.toString());
v = (Integer)chan.receive();
display.enter(v.toString());
ThreadPanel.rotate(180);

}
} catch (InterruptedException e){}

}
}

Concurrency: message passing 8
©Magee/Kramer

model

range M = 0..9 // messages with values up to 9

SENDER = SENDER[0], // shared channel chan
SENDER[e:M] = (chan.send[e]-> SENDER[(e+1)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER).

// relabeling to model synchronization
||SyncMsg = (SENDER || RECEIVER)

/{chan/chan.{send,receive}}.
LTS?

How can this be
modelled directly
without the need
for relabeling?

message operation FSP model
send(e,chan) ?

v = receive(chan) ?

Concurrency: message passing 9
©Magee/Kramer

selective receive

Channels
c1
c2
cn

How
should we deal
with multiple

channels?

Sender
send(e,c)Sender
send(e,c)Sender[n]

send(en,cn)

select
when G1 and v1=receive(chan1) => S1;

or
when G2 and v2=receive(chan2) => S2;

or
when Gn and vn=receive(chann) => Sn;

end

Select
statement...

How would we
model this in FSP?

Concurrency: message passing 10
©Magee/Kramer

selective receive

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CARPARK

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]

).

ARRIVALS = (arrive->ARRIVALS).

DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)
||DEPARTURES).

Implementation
using message
passing?

Concurrency: message passing 11
©Magee/Kramer

Java implementation - selective receive

class MsgCarPark implements Runnable {
private Channel arrive,depart;
private int spaces,N;
private StringCanvas disp;

public MsgCarPark(Channel a, Channel l,
StringCanvas d,int capacity) {

depart=l; arrive=a; N=spaces=capacity; disp=d;
}
…
public void run() {…}

}

Implement
CARPARKCONTROL as a
thread MsgCarPark
which receives signals
from channels arrive
and depart.

Concurrency: message passing 12
©Magee/Kramer

Java implementation - selective receive
public void run() {

try {
Select sel = new Select();
sel.add(depart);
sel.add(arrive);
while(true) {
ThreadPanel.rotate(12);
arrive.guard(spaces>0);
depart.guard(spaces<N);
switch (sel.choose()) {
case 1:depart.receive();display(++spaces);

break;
case 2:arrive.receive();display(--spaces);

break;
}

}
} catch InterrruptedException{}

}

See
Applet

Concurrency: message passing 13
©Magee/Kramer

♦ send(e,c) - send the
value of the expression e to
port p. The process calling
the send operation is not
blocked. The message is
queued at the port if the
receiver is not waiting.

10.2 Asynchronous Message Passing - port

Port p
Receiver

v=receive(p)

♦ v = receive(c) - receive
a value into local variable v
from port p. The process
calling the receive
operation is blocked if
there are no messages
queued to the port.

Sender
send(e,c)
Sender
send(e,c)
Sender[n]

send(en,p)
many-to-one

Concurrency: message passing 14
©Magee/Kramer

Port port = new Port();
tx1.start(new Asender(port,send1disp));
tx2.start(new Asender(port,send2disp));
rx.start(new Areceiver(port,recvdisp));

asynchronous message passing - applet

Two senders
communicate
with a receiver
via an
“unbounded”
port.

Each sender
sends a
sequence of
integer values
from 0 to 9 and
then restarts at
0 again.

Instances of SlotCanvasInstances of ThreadPanel

Concurrency: message passing 15
©Magee/Kramer

Java implementation - port

The
implementation
of Port is a
monitor that has
synchronized
access methods
for send and
receive.

class Port extends Selectable {
Vector queue = new Vector();

public synchronized void send(Object v){
queue.addElement(v);
signal();

}

public synchronized Object receive()
throws InterruptedException {

block(); clearReady();
Object tmp = queue.elementAt(0);
queue.removeElementAt(0);
return(tmp);

}
}

Concurrency: message passing 16
©Magee/Kramer

port model

range M = 0..9 // messages with values up to 9
set S = {[M],[M][M]} // queue of up to three messages

PORT //empty state, only send permitted
= (send[x:M]->PORT[x]),

PORT[h:M] //one message queued to port
= (send[x:M]->PORT[x][h]
|receive[h]->PORT
),

PORT[t:S][h:M] //two or more messages queued to port
= (send[x:M]->PORT[x][t][h]
|receive[h]->PORT[t]
).

// minimise to see result of abstracting from data values
||APORT = PORT/{send/send[M],receive/receive[M]}.

LTS?

Concurrency: message passing 17
©Magee/Kramer

model of applet

ASENDER = ASENDER[0],
ASENDER[e:M] = (port.send[e]->ASENDER[(e+1)%10]).

ARECEIVER = (port.receive[v:M]->ARECEIVER).

||AsyncMsg = (s[1..2]:ASENDER || ARECEIVER||port:PORT)
/{s[1..2].port.send/port.send}.

Safety?

S[1..2]:
ASENDER

port:PORT ARECEIVER

AsynchMsg

port.receiveS[1..2].port.send

Concurrency: message passing 18
©Magee/Kramer

10.3 Rendezvous - entry

Client Server

req=accept(entry)

res=call(entry,req)

reply(entry,res)

Request
message

Reply
message

suspended perform service

Rendezvous is a form of request-reply to support client
server communication. Many clients may request service,
but only one is serviced at a time.

Concurrency: message passing 19
©Magee/Kramer

Rendezvous

♦ res=call(e,req) - send the
value req as a request
message which is queued to
the entry e.

♦The calling process is
blocked until a reply message
is received into the local
variable req.

♦ req=accept(e) - receive
the value of the request
message from the entry e
into local variable req. The
calling process is blocked if
there are no messages
queued to the entry.

♦ reply(e,res) - send the
value res as a reply
message to entry e.

Concurrency: message passing 20
©Magee/Kramer

Entry entry = new Entry();
clA.start(new Client(entry,clientAdisp,"A"));
clB.start(new Client(entry,clientBdisp,"B"));
sv.start(new Server(entry,serverdisp));

asynchronous message passing - applet

Two clients call a
server which services a
request at a time.

Instances of SlotCanvasInstances of ThreadPanel

Concurrency: message passing 21
©Magee/Kramer

Selectable

guard()

listSelect
add()
choose()

Channel
send()
receive()

Port
send()
receive()

Entry
call()
accept()
reply()

clientChan

Java implementation - entry

The call method creates a
channel object on which to
receive the reply message.
It constructs and sends to
the entry a message
consisting of a reference
to this channel and a
reference to the req
object. It then awaits the
reply on the channel.

The accept method keeps a copy of
the channel reference; the reply
method sends the reply message to
this channel.

Entries are implemented as
extensions of ports,
thereby supporting queuing
and selective receipt.

Concurrency: message passing 22
©Magee/Kramer

public class Entry extends Port {
private CallMsg cm;

public Object call(Object req) throws InterruptedException {
Channel clientChan = new Channel();
send(new CallMsg(req,clientChan));
return clientChan.receive();

}

public Object accept()throws InterruptedException {
cm = (CallMsg) receive();
return cm.request;

}

public void reply(Object res) throws InterruptedException {
cm.replychan.send(res);

}

private class CallMsg {
Object request; Channel replychan;
CallMsg(Object m, Channel c)

{request=m; replychan=c;}
}

}

Java implementation - entry

Do call, accept and
reply need to be
synchronized methods?

Concurrency: message passing 23
©Magee/Kramer

model of entry and applet

set M = {replyA,replyB} // reply channels

||ENTRY = PORT/{call/send, accept/receive}.

CLIENT(CH='reply) = (entry.call[CH]->[CH]->CLIENT).

SERVER = (entry.accept[ch:M]->[ch]->SERVER).

||EntryDemo = (CLIENT('replyA)||CLIENT('replyB)
|| entry:ENTRY || SERVER).

CLIENT() entry:ENTRY SERVER

EntryDemo

entry.acceptentry.call[M]

We reuse the models for ports and channels …

Action labels
used in
expressions or
as parameter
values must be
prefixed with
a single quote.

Concurrency: message passing 24
©Magee/Kramer

rendezvous Vs monitor method invocation

What is the difference?
… from the point of view of the client?
… from the point of view of the server?
… mutual exclusion?

Which implementation is more efficient?
… in a local context (client and server in same computer)?
… in a distributed context (in different computers)?

Concurrency: message passing 25
©Magee/Kramer

Summary

�Concepts
� synchronous message passing – channel
� asynchronous message passing – port

- send and receive / selective receive
� rendezvous bidirectional comms - entry

- call and accept ... reply

�Models
� channel : relabelling, choice & guards
� port : message queue, choice & guards
� entry : port & channel

�Practice
� distributed computing (disjoint memory)
� threads and monitors (shared memory)

Concurrency: message passing 26
©Magee/Kramer

Course Outline

♦ Processes and Threads

♦ Concurrent Execution

♦ Shared Objects & Interference

♦ Monitors & Condition Synchronization

♦ Deadlock

♦ Safety and Liveness Properties

♦ Model-based Design

♦ Dynamic systems

♦ Message Passing

Concepts
Models
Practice

♦Concurrent Software Architectures

♦Timed Systems

