
Concurrency: Deadlock 1
©Magee/Kramer

Chapter 6

Deadlock

Concurrency: Deadlock 2
©Magee/Kramer

Deadlock

Concepts: system deadlock: no further progress
four necessary & sufficient conditions

Models: deadlock - no eligible actions

Practice: blocked threads

Aim: deadlock avoidance - to design
systems where deadlock cannot occur.

Concurrency: Deadlock 3
©Magee/Kramer

Deadlock: four necessary and sufficient conditions

♦ Serially reusable resources:
the processes involved share resources which they use under mutual
exclusion.

♦ Incremental acquisition:
processes hold on to resources already allocated to them while waiting
to acquire additional resources.

♦ No pre-emption:
once acquired by a process, resources cannot be pre-empted (forcibly
withdrawn) but are only released voluntarily.

♦ Wait-for cycle:
a circular chain (or cycle) of processes exists such that each process
holds a resource which its successor in the cycle is waiting to acquire.

Concurrency: Deadlock 4
©Magee/Kramer

Wait-for cycle

A

B

CD

E

Has A awaits B

Has B awaits C

Has C awaits D
Has D awaits E

Has E awaits A

Concurrency: Deadlock 5
©Magee/Kramer

6.1 Deadlock analysis - primitive processes

♦ deadlocked state is one with no outgoing transitions

♦ in FSP: STOP process

MOVE = (north->(south->MOVE|north->STOP)).

Trace to DEADLOCK:
north
north

♦ animation to produce a trace.

♦analysis using LTSA:

 (shortest trace to STOP)

MOVE
north north

south

0 1 2

Concurrency: Deadlock 6
©Magee/Kramer

deadlock analysis - parallel composition

♦ in systems, deadlock may arise from the
parallel composition of interacting processes.

RESOURCE = (get->put->RESOURCE).
P = (printer.get->scanner.get

->copy
 ->printer.put->scanner.put

->P).
Q = (scanner.get->printer.get

->copy
 ->scanner.put->printer.put

->Q).
||SYS = (p:P||q:Q

||{p,q}::printer:RESOURCE
 ||{p,q}::scanner:RESOURCE
).

printer:
RESOURCE
get
put

SYS

scanner:
RESOURCE
get
put

p:P

printer

scanner

q:Q

printer

scanner

Deadlock Trace?

Avoidance?

Concurrency: Deadlock 7
©Magee/Kramer

deadlock analysis - avoidance

♦ acquire resources in the same order?

♦ Timeout:
P = (printer.get-> GETSCANNER),
GETSCANNER = (scanner.get->copy->printer.put
 ->scanner.put->P
 |timeout -> printer.put->P
).
Q = (scanner.get-> GETPRINTER),
GETPRINTER = (printer.get->copy->printer.put
 ->scanner.put->Q
 |timeout -> scanner.put->Q
).

Deadlock? Progress?

Concurrency: Deadlock 8
©Magee/Kramer

6.2 Dining Philosophers

Five philosophers sit around a
circular table. Each philosopher
spends his life alternately
thinking and eating. In the centre
of the table is a large bowl of
spaghetti. A philosopher needs
two forks to eat a helping of
spaghetti.

0

1

23

4
0

1

2

3

4

One fork is placed between each
pair of philosophers and they agree
that each will only use the fork to his
immediate right and left.

Concurrency: Deadlock 9
©Magee/Kramer

Dining Philosophers - model structure diagram

phil[4]:
PHIL

phil[1]:
PHIL

phil[3]:
PHIL

phil[0]:
PHIL

phil[2]:
PHIL

FORK FORK

FORK

FORK FORK

lef tright

right

right

right

lef t

lef t

right

lef t

lef t

Each FORK is a
shared resource
with actions get
and put.

When hungry,
each PHIL must
first get his
right and left
forks before he
can start eating.

Concurrency: Deadlock 10
©Magee/Kramer

Dining Philosophers - model

FORK = (get -> put -> FORK).
PHIL = (sitdown ->right.get->left.get

 ->eat ->right.put->left.put
 ->arise->PHIL).

||DINERS(N=5)= forall [i:0..N-1]
 (phil[i]:PHIL ||
 {phil[i].left,phil[((i-1)+N)%N].right}::FORK

).

Table of philosophers:

Can this system deadlock?

Concurrency: Deadlock 11
©Magee/Kramer

Dining Philosophers - model analysis

Trace to DEADLOCK:
phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil.3.sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right.get

This is the situation where
all the philosophers become
hungry at the same time, sit
down at the table and each
philosopher picks up the
fork to his right.

The system can make no
further progress since each
philosopher is waiting for a
fork held by his neighbor i.e.
a wait-for cycle exists!

Concurrency: Deadlock 12
©Magee/Kramer

Dining Philosophers

Deadlock is easily
detected in our
model.

How easy is it to
detect a potential
deadlock in an
implementation?

Concurrency: Deadlock 13
©Magee/Kramer

Dining Philosophers - implementation in Java

♦philosophers:
active entities
- implement as
threads

♦forks: shared
passive entities
- implement as
monitors

♦display

Applet

Diners

Thread

Philosopher
1 n

Fork

1

n

PhilCanvas

display

controller

view

display

Concurrency: Deadlock 14
©Magee/Kramer

Dining Philosophers - Fork monitor

class Fork {
 private boolean taken=false;
 private PhilCanvas display;
 private int identity;

 Fork(PhilCanvas disp, int id)
 { display = disp; identity = id;}

 synchronized void put() {
 taken=false;
 display.setFork(identity,taken);
 notify();
 }

 synchronized void get()
 throws java.lang.InterruptedException {
 while (taken) wait();
 taken=true;
 display.setFork(identity,taken);
 }
}

taken
encodes the
state of the
fork

Concurrency: Deadlock 15
©Magee/Kramer

Dining Philosophers - Philosopher implementation

class Philosopher extends Thread {
 ...
 public void run() {
 try {
 while (true) { // thinking
 view.setPhil(identity,view.THINKING);
 sleep(controller.sleepTime()); // hungry
 view.setPhil(identity,view.HUNGRY);
 right.get(); // gotright chopstick
 view.setPhil(identity,view.GOTRIGHT);
 sleep(500);
 left.get(); // eating
 view.setPhil(identity,view.EATING);
 sleep(controller.eatTime());
 right.put();
 left.put();
 }
 } catch (java.lang.InterruptedException e){}
 }
}

Follows
from the
model
(sitting
down and
leaving the
table have
been
omitted).

Concurrency: Deadlock 16
©Magee/Kramer

Dining Philosophers - implementation in Java

for (int i =0; i<N; ++i)
 fork[i] = new Fork(display,i);
for (int i =0; i<N; ++i){
 phil[i] =
 new Philosopher

(this,i,fork[(i-1+N)%N],fork[i]);
 phil[i].start();
}

Code to create the philosopher
threads and fork monitors:

Concurrency: Deadlock 17
©Magee/Kramer

Dining Philosophers

To ensure deadlock
occurs eventually,
the slider control
may be moved to the
left. This reduces
the time each
philosopher spends
thinking and eating.
This "speedup"
increases the
probability of
deadlock occurring.

Concurrency: Deadlock 18
©Magee/Kramer

Deadlock-free Philosophers

Deadlock can be avoided by ensuring that a wait-for cycle
cannot exist. How? PHIL(I=0)

 = (when (I%2==0) sitdown
 ->left.get->right.get
 ->eat

->left.put->right.put
->arise->PHIL

 |when (I%2==1) sitdown
 ->right.get->left.get
 ->eat

->left.put->right.put
->arise->PHIL

).

Introduce an
asymmetry into our
definition of
philosophers.
Use the identity I of
a philosopher to make
even numbered
philosophers get
their left forks first,
odd their right first.
Other strategies?

Concurrency: Deadlock 19
©Magee/Kramer

Maze example - shortest path to “deadlock”

0 1 2

3 4 5

6 7 8

STOP

north

south

west east

We can exploit the shortest path trace produced by the
deadlock detection mechanism of LTSA to find the
shortest path out of a maze to the STOP process!

We must first
model the MAZE.

Each position can
be modelled by the
moves that it
permits. The MAZE
parameter gives the
starting position.

eg. MAZE(Start=8) = P[Start],
P[0] = (north->STOP|east->P[1]),...

Concurrency: Deadlock 20
©Magee/Kramer

Maze example - shortest path to “deadlock”

||GETOUT = MAZE(7).

0 1 2

3 4 5

6 7 8

STOP

north

south

west east

Shortest path
escape trace from
position 7 ?

Trace to
DEADLOCK:

east
north
north
west
west
north

Concurrency: Deadlock 21
©Magee/Kramer

Summary

uConcepts
l deadlock: no futher progress

l four necessary and sufficient conditions:
u serially reusable resources

u incremental acquisition

u no preemption

u wait-for cycle

uModels
l no eligable actions (analysis gives shortest path trace)

uPractice
l blocked threads

Aim: deadlock avoidance
- to design systems where
deadlock cannot occur.

