
2015 Concurrency: logical properties
1

©Magee/Kramer 2nd Edition

Chapter 14

Logical Properties
Satisfied?
Not satisfied?

2015 Concurrency: logical properties
2

©Magee/Kramer 2nd Edition

Logical Properties

Concepts: modeling properties that refer to states

Models: fluent – characterization of abstract state based on
action sets
fluent linear temporal logic FLTL

Practice: assert – Java proposition on the state of variables

2015 Concurrency: logical properties
3

©Magee/Kramer 2nd Edition

Background

! Temporal Logic due to Pneuli (1977) is a popular means to
describe process properties in logic.

! Use propositions on selected variable states at particular points in
program executions.

! Realized as the assert construct in Java.

States in an LTS model based on actions or events? HOW?
! Introduce fluents to describe abstract “states”.

! Express both safety and liveness properties as fluent propositions.

Pnueli, A. (1977). The Temporal Logic of Programs. Proc. of the 18th IEEE
 Symposium on the Foundations of Computer Science, Oct/Nov 1977, pp. 46-57.
Robert A. Kowalski, Marek J. Sergot (1986). A Logic-based Calculus
 of Events. New Generation Comput. 4(1): 67-95

2015 Concurrency: logical properties
4

©Magee/Kramer 2nd Edition

Fluents

const False = 0
const True = 1

SWITCH = (on->{off, power_cut}->SWITCH).

fluent LIGHT = <{on},{off, power_cut}>

 initially False

fluent DARK = <{off, power_cut},{on}>

 initially True

LIGHT DARK

Time

on off

TRUE FALSE FALSE

LIGHT

2015 Concurrency: logical properties
5

©Magee/Kramer 2nd Edition

Fluents

fluent FL = <{s1,…,sn},{e1,…,en}> initially B defines a fluent FL that
is initially true if the expression B is true and initially false if the expression B
is false. FL becomes true when any of the initiating (or starting) actions {s1,
…,sn} occur and false when any of the terminating (or ending) actions {e1,
…,en} occur. If the term initially B is omitted then FL is initially false. The
same action may not be used as both an initiating and terminating action.

A fluent <{s1,…,sn},{e1,…,en}> thus describes an abstract state
that is entered by executing any of the actions in {s1,…,sn}, and
exited by executing any of the actions in {e1,…,en}.

abstract
state si ei

2015 Concurrency: logical properties
6

©Magee/Kramer 2nd Edition

Fluent Linear Temporal Logic (FLTL) Expressions

! FLTL expression can be constructed using Boolean operators
and quantifiers: !

&&, ||, !, ->, <->, forall, exists

! E.g., If the light is on, power is also on:

! All lights are on:
 fluent LIGHT[i:1..2] = <on[i], off[i]>

! At least one light is on: !

 fluent LIGHT[i:1..2] = <on[i], off[i]>

fluent LIGHT = <on, off>
fluent POWER = <power_on, power_off >
LIGHT -> POWER

forall[i:1..2] LIGHT[i]

exists[i:1..2] LIGHT[i]

2015 Concurrency: logical properties
7

©Magee/Kramer 2nd Edition

Fluent Linear Temporal Logic (FLTL) Expressions

! There are five temporal operators in FLTL
" Always []
" Eventually <>
" Until U
" Weak until W
" Next time X

! Amongst the five operators, always [] and eventually <> are the
two most commonly used ones.

! Until, Weak until and Next time allows complex relation
between abstract states.

2015 Concurrency: logical properties
8

©Magee/Kramer 2nd Edition

Temporal propositions

const False = 0
const True = 1

SWITCH = (power_on -> OFF),
OFF = (on -> ON | power_off -> SWITCH),
ON = (off-> OFF | power_off -> SWITCH).

fluent LIGHT = <on, off>
fluent POWER = <power_on, power_off>

assert OK = [](LIGHT -> POWER)

always implies

2015 Concurrency: logical properties
9

©Magee/Kramer 2nd Edition

Safety Properties: Mutual Exclusion
const N = 2
range Int = 0..N
SEMAPHORE(I=0) = SEMA[I],
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]
).

LOOP = (mutex.down->enter->exit->mutex.up->LOOP).

||SEMADEMO = (p[1..N]:LOOP
 || {p[1..N]}::mutex:SEMAPHORE(2)).

fluent CRITICAL[i:1..N] = <p[i].enter, p[i].exit>

!  Two processes are not in their critical sections simultaneously?

2015 Concurrency: logical properties
10

©Magee/Kramer 2nd Edition

Safety Properties: Mutual Exclusion

! No two processes can be at critical sections simultaneously:

 assert MUTEX = []!(CRITICAL[1] && CRITICAL[2])

! LTSA compiles the assert statement into a safety property process

with an ERROR state.

! The linear temporal logic formula []F – always F – is true if
and only if the formula F is true at the current instant and at
all future instants.

2015 Concurrency: logical properties
11

©Magee/Kramer 2nd Edition

Safety Properties: Mutual Exclusion

! General expression of the mutual exclusion property for N
processes:

Trace to property violation in MUTEX:
 p.1.mutex.down
 p.1.enter CRITICAL.1
 p.2.mutex.down CRITICAL.1
 p.2.enter CRITICAL.1 && CRITICAL.2

assert MUTEX_N(N=2) = []!(exists [i:1..N-1]
 (CRITICAL[i] && CRITICAL[i+1..N]))

2015 Concurrency: logical properties
12

©Magee/Kramer 2nd Edition

Safety Properties: Oneway in Single-Lane Bridge

! Abbreviating exists[i:R] FL[i] as FL[R]

const N = 2 // number of each type of car
range ID= 1..N // car identities

fluent RED[i:ID] = <red[i].enter, red[i].exit>
fluent BLUE[i:ID] = <blue[i].enter, blue[i].exit>

assert ONEWAY = []!(exists[i:ID] RED[i]

 && exists[j:ID] BLUE[j])

assert ONEWAY = []!(RED[ID] && BLUE[ID])

2015 Concurrency: logical properties
13

©Magee/Kramer 2nd Edition

Single Lane Bridge - safety property ONEWAY

property ONEWAY =(red[ID].enter -> RED[1]
 |blue.[ID].enter -> BLUE[1]
),
RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when(i==1)red[ID].exit -> ONEWAY
 |when(i>1) red[ID].exit -> RED[i-1]
), //i is a count of red cars on the bridge
BLUE[i:ID]= (blue[ID].enter-> BLUE[i+1]
 |when(i==1)blue[ID].exit -> ONEWAY
 |when(i>1)blue[ID].exit -> BLUE[i-1]
). //i is a count of blue cars on the bridge

The fluent proposition is more concise as compared with the property process
ONEWAY. This is usually the case where a safety property can be expressed as a
relationship between abstract states of a system.

2015 Concurrency: logical properties
14

©Magee/Kramer 2nd Edition

Liveness Properties

! First red car must eventually enter the bridge:

! To check the liveness property, LTSA transforms the negation
of the assert statement in terms of a Büchi automaton.

! A Büchi automaton recognizes an infinite trace if that trace
passes through an acceptance state infinitely often.

The linear temporal logic formula <>F – eventually F – is true if
and only if the formula F is true at the current instant or at
some future instant.

assert FIRSTRED = <>red[1].enter

1

red.1.enter

0 red.1.enter

Büchi Automaton

2015 Concurrency: logical properties
15

©Magee/Kramer 2nd Edition

Liveness Properties: Progress Properties

! Compose the Büchi automaton and the original system.
! Search for acceptance state in strong connected components.
! Failure of the search implies no trace can satisfy the Buchi

automaton.
! It validates that the assert property holds.
! Red and blue cars enter the bridge infinitely often.

assert REDCROSS = forall [i:ID] []<>red[i].enter
assert BLUECROSS = forall [i:ID] []<>blue[i].enter
assert CROSS = (REDCROSS && BLUECROSS)

2015 Concurrency: logical properties
16

©Magee/Kramer 2nd Edition

Liveness Properties: Response Properties

! If a red car enters the bridge, it should eventually exit.

! It does not stop in the middle or fall over the side!

! Such kind of properties is sometimes termed “response”
properties, which follows the form:

[](request-> <>reply)

! This form of liveness property cannot be specified using the
progress properties discussed earlier.

assert REDEXIT = forall [i:ID]
 [](red[i].enter -> <>red[i].exit)

2015 Concurrency: logical properties
17

©Magee/Kramer 2nd Edition

Fluent Linear Temporal Logic (FLTL)

! There are five operators in FLTL
" Always []
" Eventually <>
" Until U
" Weak until W
" Next time X

! Amongst the five operators, always [] and eventually <> are the
two most commonly used ones.

! Until, Weak until and Next time allows complex relation
between abstract states.

2015 Concurrency: logical properties
18

©Magee/Kramer 2nd Edition

Summary

! A fluent is defined by a set of initiating actions and a set of
terminating actions.

! At a particular instant, a fluent is true if and only if it was
initially true or an initiating action has previously occurred and,
in both cases, no terminating action has yet occurred.

! In general, we don’t differentiate safety and liveness properties
in fluent linear temporal logic FLTL.

! We verify an LTS model against a given set of fluent
propositions.

! LTSA evaluates the set of fluents that hold each time an action
has taken place in the model.

2015 Concurrency: logical properties
19

©Magee/Kramer 2nd Edition

Course Outline

2.  �Processes and Threads
3.  Concurrent Execution
4.  Shared Objects & Interference
5.  Monitors & Condition Synchronization
6.  Deadlock
7.  Safety and Liveness Properties
8.  Model-based Design (Case Study)

9.  Dynamic systems

10.  Passing

11.  Concurrent Software Architectures

Concepts

Models

Practice

12.  �Timed Systems

13.  Program Verification

14.  Logical Properties

The main basic

Advanced topics …

