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Chapter 12 

Timed Systems 

Acknowledgement: Thanks to Paul Strooper 
for a first draft of these slides. 



Concurrency: timed systems 2 2 
©Magee/Kramer 2nd Edition 

Timed Systems 

Concepts: 
 programs that are concerned with passage of time 
 synchronize processes through global clock 
     

Models:  
 model time through shared ‘tick’ action 
    

Practice: 
 implement processes as Timed objects 

  control progress of time using TimeManager thread 
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timed vs. real-time systems 

With timed systems, the correctness does depend on 
performing actions by specific times. We make the 
simplifying assumption that program execution 
proceeds sufficiently quickly such that, when related 
to the time between external events, it can be ignored. 

So far we have not been concerned with passage of time: 
the correctness of the models/implementations depended 
on the order of actions, but not their duration.  

With real-time systems, we do take the duration of 
program execution into account, and we typically specify 
and subsequently guarantee an upper bound to execution 
time. Real-time systems are beyond the scope of this 
chapter. 
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♦  To model time, we adopt a discrete model of time 
introduces timing uncertainty, but can increase accuracy 
by allowing more ticks per second 

♦ Passage of time is signaled by successive ‘tick’s of a clock 
shared by all processes that need to be aware of passing 
of time 

♦  Consider detection of double mouse clicks within D ticks: 

12.1  Modeling timed systems 

DOUBLECLICK(D=3) = 
 (tick -> DOUBLECLICK | click -> PERIOD[1]),  

PERIOD[t:1..D] = 
 (when (t==D) tick -> DOUBLECLICK 
 |when (t<D)  tick -> PERIOD[t+1] 
 |click -> doubleclick -> DOUBLECLICK 
 ) 

LTS? Trace… 
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timing consistency 

||SAME = (PRODUCER(2) || CONSUMER(2)). 
||SLOWER = (PRODUCER(3) || CONSUMER(2)). 
||FASTER = (PRODUCER(2) || CONSUMER(3)). 

CONSUMER(Tc=3) = (item -> DELAY[1] | tick -> CONSUMER), 
DELAY[t:1..Tc] = (when (t==Tc) tick -> CONSUMER 

     |when (t<Tc)  tick -> DELAY[t+1] 
     ). 

PRODUCER(Tp=3) = (item -> DELAY[1]), 
DELAY[t:1..Tp] = (when (t==Tp) tick -> PRODUCER 

     |when (t<Tp)  tick -> DELAY[t+1] 
     ). 

Producer produces item every Tp seconds and consumer 
consumes item every Tc seconds.  

Safety? 

Deadlock is a 
“time-stop” 
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maximal progress 

STORE(N=3) = STORE[0], 
STORE[i:0..N] = (put -> STORE[i+1] 

    |when (i>0) get -> STORE[i-1] 
    ). 

||SYS = ( PRODUCER(1)/{put/item} 
    ||CONSUMER(1)/{get/item} 
    ||STORE 
    ). 

If items are consumed at the same rate as they are produced, then 
surely the store should not overflow? 

Safety? 

Use a store for items to connect producer and consumer.  
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model  analysis 

Trace to property violation in STORE: 
 put 
 tick 
 put 
 tick 
 put 
 tick 
 put 

Consumer always chooses tick over get 
action and store overflows! 

To ensure maximal progress of other actions, make the 
tick action low priority.  ||NEW_SYS = SYS>>{tick}. 

To ensure progression of time, make sure tick 
occurs regularly in an infinite execution. 

progress TIME = {tick} 



Concurrency: timed systems 8 8 
©Magee/Kramer 2nd Edition 

ensuring progression of time 

PROG = (start   -> LOOP | tick -> PROG), 
LOOP = (compute -> LOOP | tick -> LOOP). 
 
||CHECK = PROG>>{tick}. 
progress TIME = {tick}. 

The following process violates the TIME progress property: 

To fix this, we can include an action that terminates the 
loop and forces a tick action. 

PROG = (start   -> LOOP | tick -> PROG), 
LOOP = (compute -> LOOP 

   |tick    -> LOOP 
   |end -> tick -> PROG 
   ). 
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Modeling output in an interval 

OUTPUT(Min=1,Max=3) = 
 (start -> OUTPUT[1] 
 |tick  -> OUTPUT 
 ), 

OUTPUT[t:1..Max] = 
 (when (t>Min && t<=Max) output -> OUTPUT 
 |when (t<Max)           tick -> OUTPUT[t+1] 
 ). 

Produce an output at any time after Min ticks and before 
Max ticks.  

LTS? Trace… 
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Modeling jitter 

JITTER(Max=2) = 
 (start -> JITTER[1] 
 |tick  -> JITTER 
 ), 

JITTER[t:1..Max] = 
 (output -> FINISH[t] 
 |when (t<Max)  tick -> JITTER[t+1] 
 ). 

FINISH[t:1..Max] = 
 (when (t<Max)  tick -> FINISH[t+1] 
 |when (t==Max) tick -> JITTER 
 ). 

Produce an output at a predictable rate, but at any time 
within a given period. 

LTS? Trace… 
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Modeling timeout 

TIMEOUT(D=1) = (setT0 -> TIMEOUT[0] 
   |{tick,resetT0} -> TIMEOUT 
   ), 

TIMEOUT[t:0..D] = 
 (when (t<D)  tick -> TIMEOUT[t+1] 
 |when (t==D) timeout -> TIMEOUT 
 |resetT0 -> TIMEOUT 
 ). 

REC = (start -> setT0 -> WAIT), 
WAIT = (timeout -> REC  

   |receive -> resetT0 -> REC). 
 

||RECEIVER(D=2) = (REC || TIMEOUT(D)) 
      >>{receive,timeout,start,tick} 
      @{receive,timeout,start,tick}. 

Use of timeout to detect the loss of a message or failure 
in a distributed system. Use a separate TIMEOUT process: 

Minimized 
LTS? 

Interface actions depend on 
the system into which 
RECEIVER is placed – so we 
should not apply maximal 
progress to these actions 
within the RECEIVER 
process but later at the 
system level. Consequently, 
we give interface actions 
the same priority as the 
tick action.  
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12.2 implementing timed systems 

u Thread-based approach 
l  translate active entities in model into threads in implementation 
l  use sleep() and timed wait() to synchronize with time 

u Event-based approach 
l  translate active entities in model into objects that respond to 

timing events 
l  tick actions in model become events broadcast by a time 

manager to all program entities that need to be aware of passage 
of time 

u Use event-based approach in this chapter 
l  more direct translation from model to implementation 
l  more efficient for timed system with many activities (avoids 

context-switching overheads) 
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timed objects 

interface Timed { 
     public void pretick() throws TimeStop; 
     public void tick(); 
} 

Time manager implements a two-phase event broadcast: 
 1. pretick(): object performs all output actions 
  that are enabled in current state 
 2. tick(): object updates its state with respect to 
  inputs and passage of time 

Each process which has a tick action in its alphabet 
becomes a timed object in the implementation. 
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countdown timer 

class TimedCountDown implements Timed { 
  int i;  TimeManager clock; 
 

  TimedCountDown(int N, TimeManager clock) { 
    i = N; this.clock = clock; 
    clock.addTimed(this);  // register with time manager 
  } 
  public void pretick() throws TimeStop { 
    if (i == 0) { 
       // do beep action 
       clock.removeTimed(this); // unregister = STOP  
    } 
  } 
 

  public void tick() { --i; } 
} 

COUNTDOWN(N=3) = COUNTDOWN[N], 
COUNTDOWN[i:0..N] = (when (i>0)  tick -> COUNTDOWN[i-1] 
                    |when (i==0) beep -> STOP 
                    ) 
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timed producer-consumer 

class ProducerConsumer { 
  TimeManager clock = new TimeManager(1000); 
  Producer producer = new Producer(2); 
  Consumer consumer = new Consumer(2); 
   
  ProducerConsumer() {clock.start()} 
     
  class Producer implements Timed {...} 
  class Consumer implements Timed {...} 
} 
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timed producer-consumer - class Producer 

class Producer implements Timed { 
  int Tp,t; 
  Producer(int Tp) { 
    this.Tp = Tp; t = 1; 
    clock.addTimed(this); 
  } 
  public void pretick() throws TimeStop { 
    if (t == 1) consumer.item(new Object()); 
  } 
  public void tick() { 
    if (t < Tp) { ++t; return; } 
    if (t == Tp) { t = 1; } 
  } 
 

} 

PRODUCER(Tp=3) = (item -> DELAY[1]), 
DELAY[t:1..Tp] = (when (t==Tp) tick -> PRODUCER 
                 |when (t<Tp)  tick -> DELAY[t+1] 
                 ). 
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timed producer-consumer - class Consumer 

class Consumer implements Timed { 
  int Tc,t; Object consuming = null; 
  Consumer(int Tc) { 
    this.Tc = Tc; t = 1; 
    clock.addTimed(this); 
  } 
  public void item(Object x) throws TimeStop { 
    if (consuming != null) throw new TimeStop(); 
    consuming = x;  
  } 
  public void pretick() {} 
  public void tick() { 
    if (consuming == null) { return; } 
    if (t < Tc) { ++t; return; } 
    if (t == Tc) { consuming = null; t = 1; } 
  } 
 

} 

CONSUMER(Tc=3) = (item -> DELAY[1] | tick -> CONSUMER), 
DELAY[t:1..Tc] = (when (t==Tc) tick -> CONSUMER 
                 |when (t<Tc)  tick -> DELAY[t+1] 
                 ). 
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time manager 

class TimeManager extends Thread 
   implements AdjustmentListener { 

  volatile int delay; 
  volatile ImmutableList clocked = null; 
 
  TimeManager(int d) { delay = d; } 
  public void addTimed(Timed el) { 
    clocked = ImmutableList.add(clocked,el);  
  } 
  public void removeTimed(Timed el) { 
    clocked = ImmutableList.remove(clocked,el);  
  } 
  public void adjustmentValueChanged(AdjustmentEvent e) { 
    delay = e.getValue(); 
  } 
 

  ... 
} 

The ImmutableList class provides access to a list that 
does not change while it is enumerated. 
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time manager – run method  

public void run() { 
  try { 
    while (true)  
      try {  
        Enumeration e = ImmutableList.elements(clocked); 
        while (e.hasMoreElements())                               
          ((Timed)e.nextElement()).pretick(); 
        e = ImmutableList.elements(clocked); 
        while (e.hasMoreElements()) 
          ((Timed)e.nextElement()).tick(); 
      } catch (TimeStop s) { 
        System.out.println(“*** TimeStop”); 
        return; 
      } 
      Thread.sleep(delay); 
    } 
  } catch (InterruptedException e){} 
} 
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12.3  parcel router 

Parcels are dropped in 
a chute and fall by 
gravity; each parcel has 
a destination code, 
which can be read so 
that the parcel is 
routed to the correct 
destination bin. A 
switch can only be 
moved if there is no 
parcel in its way. 
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parcel router – structure diagram 

GEN(T) 

enter 

PARCEL_ROUTER 

top:STAGE(1) 

enter 

right:STAGE(0) 

enter 

left:STAGE(0) 

enter 

left 

right 

right 

left 

right 

left 

dest(1) 
BIN(1) 

dest(3) 
BIN(3) 

dest(0) 
BIN(0) 

dest(2) 
BIN(2) 
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parcel router – system specification 

||PARCEL_ROUTER(T=4) =  
  (top:STAGE(1) || left:STAGE(0) || right:STAGE(0) 
  || GEN(T) || forall[d:0..3] BIN(d) 
  )/{ enter/top.enter, 
      top.left/left.enter, top.right/right.enter, 
      dest[0]/left.left,   dest[1]/left.right, 
      dest[2]/right.left,  dest[3]/right.right, 
      tick/{top,left,right}.tick 
    }>>{tick}@{enter,dest,tick} 
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parcel router – GEN process and BIN property  

property BIN(D=0) = 
    (dest[D].parcel[D] -> BIN)+{dest[D][Parcel]}. 

range Dest = 0..3 
set Parcel = {parcel[Dest]} 
 
GEN(T=3) = (enter[Parcel] -> DELAY[1] | tick -> GEN), 
DELAY[t:1..T] = 

 (tick -> if (t<T) then DELAY[t+1] else GEN). 

GEN generates a parcel every T units of time. The 
destination of the parcel is chosen non-deterministically. 

A destination bin is modeled as the property BIN, which 
asserts that a parcel must be delivered to the correct 
destination bin. 
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parcel router – STAGE structure diagram 

STAGE(L) represents a part of a parcel router at level L 
with two chutes, a sensor, and a switch. 

STAGE(L) 
s:SENSORCONTROLLER(L) 

sense setSwitch 

a:CHUTE 

enter leave 

enter 
b:CHUTE 

enter leave 

g:SWITCH 

enter 

leave(1) 

leave(0) 

right 

left 
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parcel router – STAGE process  

||STAGE(L=0) =  
   ( a:CHUTE || b:CHUTE || g:SWITCH  
   || s:SENSORCONTROLLER(L) 
   )/{ enter/a.enter,   b.enter/{s.sense,a.leave}, 
       g.enter/b.leave, s.setSwitch/g.setSwitch, 
       left/g.leave[0], right/g.leave[1], 
       tick/{a,b,g}.tick 
   } >>{enter,left,right,tick} 
      @{enter,left,right,tick}. 
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parcel router – CHUTE process 

CHUTE(T=2) =  
  (enter[p:Parcel] -> DROP[p][0]  
  |tick            -> CHUTE 
  ), 
DROP[p:Parcel][i:0..T] =  
  (when (i<T)  tick     -> DROP[p][i+1] 
  |when (i==T) leave[p] -> CHUTE 
  ). 

CHUTE models the movement of a single parcel through a 
segment of a physical chute. Each chute can only handle 
one parcel, and a parcel stays in a chute for T (default 2) 
time units. 
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parcel router – SENSORCONTROLLER process 

range DIR = 0..1   // Direction: 0 – left, 1 – right 
 
SENSORCONTROLLER(Level=0) 
   = (sense.parcel[d:Dest]  
      -> setSwitch[(d>>Level)&1]->SENSORCONTROLLER). 

SENSORCONTROLLER detects a parcel by the parcel 
moving from one chute to the next. To control where the 
parcel has to be sent, it uses the destination of the 
parcel and the level of the stage of which it is part (0 
indicates left and 1 indicates right). 
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parcel router – SWITCH process 

SWITCH(T=1)   = SWITCH[0], 
SWITCH[s:Dir] =  
  (setSwitch[x:Dir] -> SWITCH[x] 
  |enter[p:Parcel]  -> SWITCH[s][p][0] 
  |tick             -> SWITCH[s] 
  ), 
SWITCH[s:Dir][p:Parcel][i:0..T] =  
  (setSwitch[Dir]         -> SWITCH[s][p][i]  
  |when (i<T) tick        -> SWITCH[s][p][i+1] 
  |when (i==T)leave[s][p] -> SWITCH[s] 
  ). 

SWITCH controls the direction in which the parcel leaves. 
It ignores commands from the SENSORCONTROLLER 
process when there is a parcel in the switch (since the 
physical switch can not move then).  
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parcel router – ANALYSIS 

u PARCEL_ROUTER(3) leads to property violation 
l  trace to property violation in BIN(0): 

 enter.parcel.0 -> tick -> tick -> tick -> 
  enter.parcel.1 -> tick -> tick -> tick -> 
  enter.parcel.0 -> tick -> tick -> tick -> 
  enter.parcel.0 -> tick -> 

  dest.0.parcel.0 -> tick -> tick -> 

  enter.parcel.0 -> tick -> dest.0.parcel.1 
l  first parcel is in switch when sensor detects second parcel and 

attempts to change the switch 

u PARCEL_ROUTER(4) does not lead to property violation 
and satisfies the TIME progress property 
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parcel router – implementation 

SwitchControl Timed 

SensorController 

DestinationBin 

Chute 

Switch 

ParcelMover 

interface ParcelMover { 
 void enter(Parcel p) throws TimeStop; 

} 

interface SwitchControl { 
 void setSwitch(int Direction) 

} 
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parcel router – CHUTE implementation 

class Chute implements ParcelMover, Timed { 
  protected int i,T,direction; 
  protected Parcel current = null; 
  ParcelMover next = null; 
 
  Chute(int len, int dir) { T = len; direction = dir; } 
  public void enter(Parcel p) throws TimeStop { 
    if (current != null) throw new TimeStop(); 
    current = p; i = 0;  //  package enters chute 
  } 
  public void pretick() throws TimeStop { 
    if (current == null) return; 
    if (i == T) { 
       next.enter(current);  //  package leaves chute 
       current = null; 
    } 
  } 
  public void tick() { 
    if (current == null) return; 
    ++i; current.move(direction); 
  } 
} 
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parcel router – SWITCH implementation 

class Switch extends Chute 
             implements SwitchControl { 
  ParcelMover left = null;  
  ParcelMover right = null;  
  private ParcelCanvas display; 
  private int gate; 
   
  Switch(int len, int dir, int g, ParcelCanvas d) 
  { super(len,dir); display = d; gate = g; } 
 
  public void setSwitch(int direction) { 
    if (current == null)  
      // nothing passing through switch 
      display.setGate(gate,direction);  
      if (direction == 0) 
        next = left;  
      else  
        next = right;  
      } 
    } 
  } 
} 
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parcel router – SENSORCONTROLLER implementation 

class SensorController implements ParcelMover { 
  ParcelMover next; 
  SwitchControl controlled; 
  protected int level; 
     
  SensorController(int level) { this.level = level; } 
 
     // parcel enters and leaves within one clock cycle 
  public void enter(Parcel p) throws TimeStop { 
    route(p.destination); 
    next.enter(p);  
  } 
 
  protected void route(int destination) { 
    int dir = (destination>>level) & 1; 
    controlled.setSwitch(dir); 
  } 
} 
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parcel router – STAGE implementation 

ParcelMover makeStage( 
    (ParcelMover left, ParcelMover right, 
     int fallDir, //  movement direction for parcel display 
     int level,   //  0 or 1 as in the model 
         int gate,    //  identity of gate for display purposes  
    ) 
{ 
  //  create parts and register each with TimeManager ticker 
  Chute a = new Chute(16,fallDir); 
  ticker.addTimed(a); 
  SensorController s = new SensorController(level); 
  Chute b = new Chute(15,fallDir); 
  ticker.addTimed(b); 
  Switch g = new Switch(12,fallDir,gate,display); 
  ticker.addTimed(g); 
     //  wire things together 
  a.next = s; s.next = b;    s.controlled = g; 
  b.next = g; g.left = left; g.right = right; 
  return a; 
} 
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Summary 

u Concepts 
l  programs that are concerned with passage of time 
l  synchronize processes through global clock 

u Models 
l  model time through shared ‘tick’ action 

u Practice 
l  event-based approach: implement processes as Timed objects 

that respond to timing events 
l  TimeManager thread broadcasts passing of time to Timed 

objects 


