
Concurrency: timed systems 1 1
©Magee/Kramer 2nd Edition

Chapter 12

Timed Systems

Acknowledgement: Thanks to Paul Strooper
for a first draft of these slides.

Concurrency: timed systems 2 2
©Magee/Kramer 2nd Edition

Timed Systems

Concepts:
 programs that are concerned with passage of time
 synchronize processes through global clock

Models:
 model time through shared ‘tick’ action

Practice:
 implement processes as Timed objects

 control progress of time using TimeManager thread

Concurrency: timed systems 3 3
©Magee/Kramer 2nd Edition

timed vs. real-time systems

With timed systems, the correctness does depend on
performing actions by specific times. We make the
simplifying assumption that program execution
proceeds sufficiently quickly such that, when related
to the time between external events, it can be ignored.

So far we have not been concerned with passage of time:
the correctness of the models/implementations depended
on the order of actions, but not their duration.

With real-time systems, we do take the duration of
program execution into account, and we typically specify
and subsequently guarantee an upper bound to execution
time. Real-time systems are beyond the scope of this
chapter.

Concurrency: timed systems 4 4
©Magee/Kramer 2nd Edition

♦  To model time, we adopt a discrete model of time
introduces timing uncertainty, but can increase accuracy
by allowing more ticks per second

♦ Passage of time is signaled by successive ‘tick’s of a clock
shared by all processes that need to be aware of passing
of time

♦  Consider detection of double mouse clicks within D ticks:

12.1 Modeling timed systems

DOUBLECLICK(D=3) =
 (tick -> DOUBLECLICK | click -> PERIOD[1]),

PERIOD[t:1..D] =
 (when (t==D) tick -> DOUBLECLICK
 |when (t<D) tick -> PERIOD[t+1]
 |click -> doubleclick -> DOUBLECLICK
)

LTS? Trace…

Concurrency: timed systems 5 5
©Magee/Kramer 2nd Edition

timing consistency

||SAME = (PRODUCER(2) || CONSUMER(2)).
||SLOWER = (PRODUCER(3) || CONSUMER(2)).
||FASTER = (PRODUCER(2) || CONSUMER(3)).

CONSUMER(Tc=3) = (item -> DELAY[1] | tick -> CONSUMER),
DELAY[t:1..Tc] = (when (t==Tc) tick -> CONSUMER

 |when (t<Tc) tick -> DELAY[t+1]
).

PRODUCER(Tp=3) = (item -> DELAY[1]),
DELAY[t:1..Tp] = (when (t==Tp) tick -> PRODUCER

 |when (t<Tp) tick -> DELAY[t+1]
).

Producer produces item every Tp seconds and consumer
consumes item every Tc seconds.

Safety?

Deadlock is a
“time-stop”

Concurrency: timed systems 6 6
©Magee/Kramer 2nd Edition

maximal progress

STORE(N=3) = STORE[0],
STORE[i:0..N] = (put -> STORE[i+1]

 |when (i>0) get -> STORE[i-1]
).

||SYS = (PRODUCER(1)/{put/item}
 ||CONSUMER(1)/{get/item}
 ||STORE
).

If items are consumed at the same rate as they are produced, then
surely the store should not overflow?

Safety?

Use a store for items to connect producer and consumer.

Concurrency: timed systems 7 7
©Magee/Kramer 2nd Edition

model analysis

Trace to property violation in STORE:
 put
 tick
 put
 tick
 put
 tick
 put

Consumer always chooses tick over get
action and store overflows!

To ensure maximal progress of other actions, make the
tick action low priority. ||NEW_SYS = SYS>>{tick}.

To ensure progression of time, make sure tick
occurs regularly in an infinite execution.

progress TIME = {tick}

Concurrency: timed systems 8 8
©Magee/Kramer 2nd Edition

ensuring progression of time

PROG = (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP | tick -> LOOP).

||CHECK = PROG>>{tick}.
progress TIME = {tick}.

The following process violates the TIME progress property:

To fix this, we can include an action that terminates the
loop and forces a tick action.

PROG = (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP

 |tick -> LOOP
 |end -> tick -> PROG
).

Concurrency: timed systems 9 9
©Magee/Kramer 2nd Edition

Modeling output in an interval

OUTPUT(Min=1,Max=3) =
 (start -> OUTPUT[1]
 |tick -> OUTPUT
),

OUTPUT[t:1..Max] =
 (when (t>Min && t<=Max) output -> OUTPUT
 |when (t<Max) tick -> OUTPUT[t+1]
).

Produce an output at any time after Min ticks and before
Max ticks.

LTS? Trace…

Concurrency: timed systems 10 10
©Magee/Kramer 2nd Edition

Modeling jitter

JITTER(Max=2) =
 (start -> JITTER[1]
 |tick -> JITTER
),

JITTER[t:1..Max] =
 (output -> FINISH[t]
 |when (t<Max) tick -> JITTER[t+1]
).

FINISH[t:1..Max] =
 (when (t<Max) tick -> FINISH[t+1]
 |when (t==Max) tick -> JITTER
).

Produce an output at a predictable rate, but at any time
within a given period.

LTS? Trace…

Concurrency: timed systems 11 11
©Magee/Kramer 2nd Edition

Modeling timeout

TIMEOUT(D=1) = (setT0 -> TIMEOUT[0]
 |{tick,resetT0} -> TIMEOUT
),

TIMEOUT[t:0..D] =
 (when (t<D) tick -> TIMEOUT[t+1]
 |when (t==D) timeout -> TIMEOUT
 |resetT0 -> TIMEOUT
).

REC = (start -> setT0 -> WAIT),
WAIT = (timeout -> REC

 |receive -> resetT0 -> REC).

||RECEIVER(D=2) = (REC || TIMEOUT(D))
 >>{receive,timeout,start,tick}
 @{receive,timeout,start,tick}.

Use of timeout to detect the loss of a message or failure
in a distributed system. Use a separate TIMEOUT process:

Minimized
LTS?

Interface actions depend on
the system into which
RECEIVER is placed – so we
should not apply maximal
progress to these actions
within the RECEIVER
process but later at the
system level. Consequently,
we give interface actions
the same priority as the
tick action.

Concurrency: timed systems 12 12
©Magee/Kramer 2nd Edition

12.2 implementing timed systems

u Thread-based approach
l  translate active entities in model into threads in implementation
l  use sleep() and timed wait() to synchronize with time

u Event-based approach
l  translate active entities in model into objects that respond to

timing events
l  tick actions in model become events broadcast by a time

manager to all program entities that need to be aware of passage
of time

u Use event-based approach in this chapter
l  more direct translation from model to implementation
l  more efficient for timed system with many activities (avoids

context-switching overheads)

Concurrency: timed systems 13 13
©Magee/Kramer 2nd Edition

timed objects

interface Timed {
 public void pretick() throws TimeStop;
 public void tick();
}

Time manager implements a two-phase event broadcast:
 1. pretick(): object performs all output actions
 that are enabled in current state
 2. tick(): object updates its state with respect to
 inputs and passage of time

Each process which has a tick action in its alphabet
becomes a timed object in the implementation.

Concurrency: timed systems 14 14
©Magee/Kramer 2nd Edition

countdown timer

class TimedCountDown implements Timed {
 int i; TimeManager clock;

 TimedCountDown(int N, TimeManager clock) {
 i = N; this.clock = clock;
 clock.addTimed(this); // register with time manager
 }
 public void pretick() throws TimeStop {
 if (i == 0) {
 // do beep action
 clock.removeTimed(this); // unregister = STOP
 }
 }

 public void tick() { --i; }
}

COUNTDOWN(N=3) = COUNTDOWN[N],
COUNTDOWN[i:0..N] = (when (i>0) tick -> COUNTDOWN[i-1]
 |when (i==0) beep -> STOP
)

Concurrency: timed systems 15 15
©Magee/Kramer 2nd Edition

timed producer-consumer

class ProducerConsumer {
 TimeManager clock = new TimeManager(1000);
 Producer producer = new Producer(2);
 Consumer consumer = new Consumer(2);

 ProducerConsumer() {clock.start()}

 class Producer implements Timed {...}
 class Consumer implements Timed {...}
}

Concurrency: timed systems 16 16
©Magee/Kramer 2nd Edition

timed producer-consumer - class Producer

class Producer implements Timed {
 int Tp,t;
 Producer(int Tp) {
 this.Tp = Tp; t = 1;
 clock.addTimed(this);
 }
 public void pretick() throws TimeStop {
 if (t == 1) consumer.item(new Object());
 }
 public void tick() {
 if (t < Tp) { ++t; return; }
 if (t == Tp) { t = 1; }
 }

}

PRODUCER(Tp=3) = (item -> DELAY[1]),
DELAY[t:1..Tp] = (when (t==Tp) tick -> PRODUCER
 |when (t<Tp) tick -> DELAY[t+1]
).

Concurrency: timed systems 17 17
©Magee/Kramer 2nd Edition

timed producer-consumer - class Consumer

class Consumer implements Timed {
 int Tc,t; Object consuming = null;
 Consumer(int Tc) {
 this.Tc = Tc; t = 1;
 clock.addTimed(this);
 }
 public void item(Object x) throws TimeStop {
 if (consuming != null) throw new TimeStop();
 consuming = x;
 }
 public void pretick() {}
 public void tick() {
 if (consuming == null) { return; }
 if (t < Tc) { ++t; return; }
 if (t == Tc) { consuming = null; t = 1; }
 }

}

CONSUMER(Tc=3) = (item -> DELAY[1] | tick -> CONSUMER),
DELAY[t:1..Tc] = (when (t==Tc) tick -> CONSUMER
 |when (t<Tc) tick -> DELAY[t+1]
).

Concurrency: timed systems 18 18
©Magee/Kramer 2nd Edition

time manager

class TimeManager extends Thread
 implements AdjustmentListener {

 volatile int delay;
 volatile ImmutableList clocked = null;

 TimeManager(int d) { delay = d; }
 public void addTimed(Timed el) {
 clocked = ImmutableList.add(clocked,el);
 }
 public void removeTimed(Timed el) {
 clocked = ImmutableList.remove(clocked,el);
 }
 public void adjustmentValueChanged(AdjustmentEvent e) {
 delay = e.getValue();
 }

 ...
}

The ImmutableList class provides access to a list that
does not change while it is enumerated.

Concurrency: timed systems 19 19
©Magee/Kramer 2nd Edition

time manager – run method

public void run() {
 try {
 while (true)
 try {
 Enumeration e = ImmutableList.elements(clocked);
 while (e.hasMoreElements())
 ((Timed)e.nextElement()).pretick();
 e = ImmutableList.elements(clocked);
 while (e.hasMoreElements())
 ((Timed)e.nextElement()).tick();
 } catch (TimeStop s) {
 System.out.println(“*** TimeStop”);
 return;
 }
 Thread.sleep(delay);
 }
 } catch (InterruptedException e){}
}

Concurrency: timed systems 20 20
©Magee/Kramer 2nd Edition

12.3 parcel router

Parcels are dropped in
a chute and fall by
gravity; each parcel has
a destination code,
which can be read so
that the parcel is
routed to the correct
destination bin. A
switch can only be
moved if there is no
parcel in its way.

Concurrency: timed systems 21 21
©Magee/Kramer 2nd Edition

parcel router – structure diagram

GEN(T)

enter

PARCEL_ROUTER

top:STAGE(1)

enter

right:STAGE(0)

enter

left:STAGE(0)

enter

left

right

right

left

right

left

dest(1)
BIN(1)

dest(3)
BIN(3)

dest(0)
BIN(0)

dest(2)
BIN(2)

Concurrency: timed systems 22 22
©Magee/Kramer 2nd Edition

parcel router – system specification

||PARCEL_ROUTER(T=4) =
 (top:STAGE(1) || left:STAGE(0) || right:STAGE(0)
 || GEN(T) || forall[d:0..3] BIN(d)
)/{ enter/top.enter,
 top.left/left.enter, top.right/right.enter,
 dest[0]/left.left, dest[1]/left.right,
 dest[2]/right.left, dest[3]/right.right,
 tick/{top,left,right}.tick
 }>>{tick}@{enter,dest,tick}

Concurrency: timed systems 23 23
©Magee/Kramer 2nd Edition

parcel router – GEN process and BIN property

property BIN(D=0) =
 (dest[D].parcel[D] -> BIN)+{dest[D][Parcel]}.

range Dest = 0..3
set Parcel = {parcel[Dest]}

GEN(T=3) = (enter[Parcel] -> DELAY[1] | tick -> GEN),
DELAY[t:1..T] =

 (tick -> if (t<T) then DELAY[t+1] else GEN).

GEN generates a parcel every T units of time. The
destination of the parcel is chosen non-deterministically.

A destination bin is modeled as the property BIN, which
asserts that a parcel must be delivered to the correct
destination bin.

Concurrency: timed systems 24 24
©Magee/Kramer 2nd Edition

parcel router – STAGE structure diagram

STAGE(L) represents a part of a parcel router at level L
with two chutes, a sensor, and a switch.

STAGE(L)
s:SENSORCONTROLLER(L)

sense setSwitch

a:CHUTE

enter leave

enter
b:CHUTE

enter leave

g:SWITCH

enter

leave(1)

leave(0)

right

left

Concurrency: timed systems 25 25
©Magee/Kramer 2nd Edition

parcel router – STAGE process

||STAGE(L=0) =
 (a:CHUTE || b:CHUTE || g:SWITCH
 || s:SENSORCONTROLLER(L)
)/{ enter/a.enter, b.enter/{s.sense,a.leave},
 g.enter/b.leave, s.setSwitch/g.setSwitch,
 left/g.leave[0], right/g.leave[1],
 tick/{a,b,g}.tick
 } >>{enter,left,right,tick}
 @{enter,left,right,tick}.

Concurrency: timed systems 26 26
©Magee/Kramer 2nd Edition

parcel router – CHUTE process

CHUTE(T=2) =
 (enter[p:Parcel] -> DROP[p][0]
 |tick -> CHUTE
),
DROP[p:Parcel][i:0..T] =
 (when (i<T) tick -> DROP[p][i+1]
 |when (i==T) leave[p] -> CHUTE
).

CHUTE models the movement of a single parcel through a
segment of a physical chute. Each chute can only handle
one parcel, and a parcel stays in a chute for T (default 2)
time units.

Concurrency: timed systems 27 27
©Magee/Kramer 2nd Edition

parcel router – SENSORCONTROLLER process

range DIR = 0..1 // Direction: 0 – left, 1 – right

SENSORCONTROLLER(Level=0)
 = (sense.parcel[d:Dest]
 -> setSwitch[(d>>Level)&1]->SENSORCONTROLLER).

SENSORCONTROLLER detects a parcel by the parcel
moving from one chute to the next. To control where the
parcel has to be sent, it uses the destination of the
parcel and the level of the stage of which it is part (0
indicates left and 1 indicates right).

Concurrency: timed systems 28 28
©Magee/Kramer 2nd Edition

parcel router – SWITCH process

SWITCH(T=1) = SWITCH[0],
SWITCH[s:Dir] =
 (setSwitch[x:Dir] -> SWITCH[x]
 |enter[p:Parcel] -> SWITCH[s][p][0]
 |tick -> SWITCH[s]
),
SWITCH[s:Dir][p:Parcel][i:0..T] =
 (setSwitch[Dir] -> SWITCH[s][p][i]
 |when (i<T) tick -> SWITCH[s][p][i+1]
 |when (i==T)leave[s][p] -> SWITCH[s]
).

SWITCH controls the direction in which the parcel leaves.
It ignores commands from the SENSORCONTROLLER
process when there is a parcel in the switch (since the
physical switch can not move then).

Concurrency: timed systems 29 29
©Magee/Kramer 2nd Edition

parcel router – ANALYSIS

u PARCEL_ROUTER(3) leads to property violation
l  trace to property violation in BIN(0):

 enter.parcel.0 -> tick -> tick -> tick ->
 enter.parcel.1 -> tick -> tick -> tick ->
 enter.parcel.0 -> tick -> tick -> tick ->
 enter.parcel.0 -> tick ->

 dest.0.parcel.0 -> tick -> tick ->

 enter.parcel.0 -> tick -> dest.0.parcel.1
l  first parcel is in switch when sensor detects second parcel and

attempts to change the switch

u PARCEL_ROUTER(4) does not lead to property violation
and satisfies the TIME progress property

Concurrency: timed systems 30 30
©Magee/Kramer 2nd Edition

parcel router – implementation

SwitchControl Timed

SensorController

DestinationBin

Chute

Switch

ParcelMover

interface ParcelMover {
 void enter(Parcel p) throws TimeStop;

}

interface SwitchControl {
 void setSwitch(int Direction)

}

Concurrency: timed systems 31 31
©Magee/Kramer 2nd Edition

parcel router – CHUTE implementation

class Chute implements ParcelMover, Timed {
 protected int i,T,direction;
 protected Parcel current = null;
 ParcelMover next = null;

 Chute(int len, int dir) { T = len; direction = dir; }
 public void enter(Parcel p) throws TimeStop {
 if (current != null) throw new TimeStop();
 current = p; i = 0; // package enters chute
 }
 public void pretick() throws TimeStop {
 if (current == null) return;
 if (i == T) {
 next.enter(current); // package leaves chute
 current = null;
 }
 }
 public void tick() {
 if (current == null) return;
 ++i; current.move(direction);
 }
}

Concurrency: timed systems 32 32
©Magee/Kramer 2nd Edition

parcel router – SWITCH implementation

class Switch extends Chute
 implements SwitchControl {
 ParcelMover left = null;
 ParcelMover right = null;
 private ParcelCanvas display;
 private int gate;

 Switch(int len, int dir, int g, ParcelCanvas d)
 { super(len,dir); display = d; gate = g; }

 public void setSwitch(int direction) {
 if (current == null)
 // nothing passing through switch
 display.setGate(gate,direction);
 if (direction == 0)
 next = left;
 else
 next = right;
 }
 }
 }
}

Concurrency: timed systems 33 33
©Magee/Kramer 2nd Edition

parcel router – SENSORCONTROLLER implementation

class SensorController implements ParcelMover {
 ParcelMover next;
 SwitchControl controlled;
 protected int level;

 SensorController(int level) { this.level = level; }

 // parcel enters and leaves within one clock cycle
 public void enter(Parcel p) throws TimeStop {
 route(p.destination);
 next.enter(p);
 }

 protected void route(int destination) {
 int dir = (destination>>level) & 1;
 controlled.setSwitch(dir);
 }
}

Concurrency: timed systems 34 34
©Magee/Kramer 2nd Edition

parcel router – STAGE implementation

ParcelMover makeStage(
 (ParcelMover left, ParcelMover right,
 int fallDir, // movement direction for parcel display
 int level, // 0 or 1 as in the model
 int gate, // identity of gate for display purposes
)
{
 // create parts and register each with TimeManager ticker
 Chute a = new Chute(16,fallDir);
 ticker.addTimed(a);
 SensorController s = new SensorController(level);
 Chute b = new Chute(15,fallDir);
 ticker.addTimed(b);
 Switch g = new Switch(12,fallDir,gate,display);
 ticker.addTimed(g);
 // wire things together
 a.next = s; s.next = b; s.controlled = g;
 b.next = g; g.left = left; g.right = right;
 return a;
}

Concurrency: timed systems 35 35
©Magee/Kramer 2nd Edition

Summary

u Concepts
l  programs that are concerned with passage of time
l  synchronize processes through global clock

u Models
l  model time through shared ‘tick’ action

u Practice
l  event-based approach: implement processes as Timed objects

that respond to timing events
l  TimeManager thread broadcasts passing of time to Timed

objects

