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Abstract—Cyberattack investigations are crucial for under-
standing the Tactics, Techniques, and Procedures of adver-
saries, but they face increasing challenges due to the com-
plexity, scale, and volume of modern cyber incidents. Cur-
rent approaches, such as heuristic-based and learning-based
methods, struggle with scalability and reliance on labeled data,
leading to difficulties in adapting to new threats. In this paper,
we present CLOUSEAU, a hierarchical multi-agent approach
that leverages the reasoning capabilities of Large Language
Models (LLMs) to autonomously investigate cyberattacks from
a single Point-Of-Interest while requiring neither prior training
nor predefined heuristics. We evaluated CLOUSEAU on 21 di-
verse attack scenarios, including complex cases from DARPA’s
OpTC engagements and Advanced Persistent Threat (APT) at-
tack scenarios from the ATLAS dataset. In single-host settings,
CLOUSEAU achieves an average F1 score of 99.78 %, surpassing
strong baselines by more than 33%. To demonstrate its broad
applicability, we tested Clouseau with both proprietary and
open-weight LLMs, achieving strong performance in both
cases, thereby enabling deployment in private environments
where access to proprietary models is restricted.

Index Terms—Incident Response, Attack Investigation, Digi-
tal Forensics, Security Applications of Generative Al, Large
Language Models

1. Introduction

When analysts are given a Point Of Interest (POI), such
as an abnormal network connection or a suspicious file
download, they examine system logs and other telemetry to
reconstruct the attacker’s actions. This investigation seeks
to discover the root cause, reveal the vulnerabilities the
adversary exploited, and measure the incident’s impact.
The resulting insights guide both immediate mitigation and
longer-term preventive measures [1]-[3]. In practice, such
work often falls to seasoned security professionals who
know the affected environment, understand its defensive
controls, and can reason about likely adversary capabilities
[4].

Relying solely on manual analysis, however, is becoming
untenable. Contemporary attacks are increasingly intricate
and can unfold over months. For example, the SolarWinds
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Orion compromise began with a malicious software update
in March 2020 and remained undetected until FireEye dis-
covered the backdoor that December [5]. At the same time,
malicious activity is buried in torrents of routine telemetry,
which, when collected at high fidelity, can reach gigabytes
of data per host per incident [6]-[9]. Investigators therefore
face a needle in a haystack challenge in which a handful
of critical events, scattered across long timespans, must be
extracted from a vast web of benign activity [2], [8], [10].

Over the past several years, researchers have explored a
range of techniques for automating attack investigation, and
these efforts coalesce around two broad approaches. The first
relies on predefined heuristics distilled from tactics observed
in past incidents (e.g., [2], [3]). Such systems filter telemetry
by, for example, temporal proximity or data-path relevance
in order to surface events connected to a POI They can
work well in practice, yet a skilled adversary may sidestep
them by undermining the heuristics’ assumptions. For in-
stance, by “living off the land” and re-using binaries already
present on the host, thereby breaking data-path relevance
without introducing new executables. The second approach
applies behavioral-learning techniques to discover patterns
in security data (e.g., [10]-[12]). Although this strategy
has produced promising results, it is far from effortless. It
demands extensive manual labor to collect, label, and curate
large training datasets, and it relies on the assumption that
the distribution of training data matches what the model
will see in deployment [13], [14]. In security operations, that
assumption almost never holds, because benign changes and
attacker innovation continuously induce distribution shifts
[15]-[18]. As these shifts accumulate, behavioral models
may suffer rising false-positive and false-negative rates,
forcing practitioners into an expensive cycle of continual
retraining to keep the models effective [19].

In this paper, we introduce CLOUSEAU, a hierarchical
multi-agent system that automates attack investigation with-
out the need for task-specific training or expert heuristics.
CLOUSEAU harnesses the reasoning abilities and built-in
security knowledge of general-purpose LLMs to perform
end-to-end analyses. It first converts raw incident logs into
an LLM-friendly format, then deploys Question-Answering
agents that expose the data through a natural-language inter-
face. Investigator agents use this interface to issue focused
queries, while a Chief Inspector agent orchestrates their



work, reconstructs the attack narrative, and maps each step
to the Cyber Kill Chain framework [20].

We evaluated CLOUSEAU on 21 diverse attack scenar-
ios drawn from two distinct environments. Each scenario
was seeded with three POls, yielding 63 investigations in
total. We then compared the results with those produced
by two state-of-the-art learning-based systems, ATLAS [10]
and AIRTAG [11]. Our results demonstrate that CLOUSEAU
is highly effective in reconstructing a detailed and accurate
attack story, setting a new benchmark in automated attack
investigation and delivering better performance than current
baselines by over 33%.

In summary, the contributions of this paper are:

o We demonstrate that LLMs can be orchestrated in agen-
tic workflows to reconstruct complete attack narratives,
showing their promise for complex problems in digital
forensics and cyber-incident response.

o We design, implement, and open-source CLOUSEAU!,
a hierarchical multi-agent framework for attack story
reconstruction from incident logs, requiring no task-
specific training data or expert-crafted rules.

« We conducted extensive experiments across various at-
tack investigation scenarios, including complex scenar-
ios with advanced tactics, to validate the effectiveness
of CLOUSEAU. In particular, we benchmarked it against
two state-of-the-art learning-based attack investigation
systems, showing improved performance.

o We extend the ATLAS dataset with synthetic cases that
mimic practical challenges such as disconnected attack
artifacts, thereby offering a richer benchmark for LLM-
driven investigation systems.

o We label and repurpose the comprehensive attack sce-
narios from DARPA’s OpTC engagements for attack-
investigation research, providing an additional high-
fidelity benchmark to the community.

2. Background

2.1. Attack Investigation

Attack investigation is a post-detection activity whose
goal is to reconstruct the complete chain of malicious behav-
ior so that defenders can understand an adversary’s Tactics,
Techniques, and Procedures (TTPs) [4]. The investigation
typically starts at a POI and then moves backwards to
locate the initial foothold and forwards to measure the
attack’s full impact [21]. The raw evidence often comes from
kernel-level audit logs, which capture low-level interactions
between processes, files, sockets, and other system objects
[21, 131, [9], [22], [23]. These records are often enriched
with application-level logs (e.g., web-server, database, or
container logs) that provide higher-level semantics missing
from the kernel view [10], [11].

Because each malicious event is linked to a vast number
of benign ones, tracing these connections can trigger a de-
pendency explosion in visualizations or expose a significant

1. Prompts for all agents, source code, and evaluation scripts are avail-
able at our public repository https://github.com/ICL-ml4csec/Clouseau.

semantic gap when analysts examine the raw records [24]-
[28]. Consider a drive-by download: the attacker exploits a
browser bug that silently retrieves and executes malware. An
investigator can confirm that the rogue executable originated
in a particular browsing session, yet the sheer volume of
concurrent web activity (tabs, ads, background requests,
extensions) can still mask the specific page or domain that
delivered the exploit.

2.2. Large Language Models

LLMs, such as the open-weight LLaMA [29] and the
proprietary GPT-4 [30], are among the most transformative
innovations of this decade. Trained on massive text corpora,
these models exhibit professional-level performance across
a wide range of general-purpose tasks [31]-[33]. To tackle
specialized or complex problems, LLMs can be adapted
through techniques such as fine-tuning and in-context learn-
ing. Fine-tuning involves updating the model’s parameters
with task-specific data, often resulting in strong task per-
formance [34]-[36]. However, it requires high-quality la-
beled data and can introduce issues such as catastrophic
forgetting, where the model loses prior knowledge [37]-
[39]. In contrast, in-context learning elicits task-specific
behavior at inference time by structuring the prompt with
task instructions, examples, or other context, avoiding any
parameter updates [40]-[42].

Common prompting strategies include zero-shot, few-
shot, and role-based prompting. In zero-shot prompting, the
model is provided with only a description of the task, and
optionally, a high-level strategy to solve the problem at hand
[43]. Few-shot prompting supplements the instructions with
a small number of input-output examples to demonstrate the
desired task behavior [40]. Role-based prompting guides the
model by assigning it a specific identity or expertise (e.g., a
security analyst), which has been shown to improve perfor-
mance in certain domains [44]. These prompting strategies
can be composed to implement LLM agents, which are au-
tonomous systems that leverage in-context learning, engage
in multi-turn conversations, access external resources (in
our case, incident logs) through tool-calling, and iteratively
refine their reasoning across multiple steps.

3. Motivation

3.1. Challenges

Although prior research in machine-learning has ad-
vanced the state of the art, often outperforming heuristic
techniques, it still faces three fundamental conceptual chal-
lenges.

@ High dependency on manual efforts. There is a need for
large, high-quality labeled training datasets to build effective
learning models. For strong performance, the datasets must
meet two key criteria: representativeness and reliability.
Representativeness ensures that the data reflects both the
current threat landscape and the normal systems behavior,



while reliability requires that the feature space is carefully
constructed to avoid biases or shortcuts (e.g., reliance on
specific file names such as ‘malicious.exe’) and that all
labels are accurate [45]—[49]. Furthermore, this is not a one-
time effort. Datasets need to be continuously updated to
address the challenge of distribution shift, a common issue in
learning-based security solutions such as malware detection
[16], [18], NIDS [50]-[52], and anomaly detection [19],
[53]-[55]. This ongoing need for data collection, labeling,
and pre-processing involves significant manual effort, mak-
ing the process resource-intensive, error-prone, and time-
consuming.

@ Need for precise attack boundaries. Incident logs are
used as input to recover the complete attack story, but
selecting the right set of logs is challenging. To accurately
recover the attack story, one must know exactly when the
attack started and ended; without these temporal boundaries,
it becomes difficult to determine how far back to trace or
when to stop collecting logs. This is particularly problematic
in sophisticated attacks that span days, weeks, or even
months, where malicious events occur sporadically in large
volumes of benign activity. As a result, it becomes difficult
to filter out irrelevant logs and accurately capture the full
scope of the incident.

© High false positive rates. If the data boundaries of
Challenge @ are not clearly defined, or training data of
Challenge @ are not up-to-date, current approaches produce
high error rates that complicate the interpretation of their
attack narrative outputs. In §6, we analyze two state-of-
the-art learning-based baselines to assess their error levels,
and were surprised to find that they can generate significant
errors even on test data drawn from the same distribution as
the training set.

3.2. Our Solution

We now describe how our approach, CLOUSEAU, ad-
dresses the challenges described above.

@ In-context learning eliminates dependence on labeled
data. CLOUSEAU leverages LLMs with in-context learning
capabilities, enabling it to analyze and process data dy-
namically based on the context provided at runtime. Unlike
traditional learning-based systems that depend on extensive
volumes of labeled training data to identify and classify
malicious activities, CLOUSEAU operates without the need
for pre-existing labeled datasets. This eliminates the time-
consuming processes of manual data collection, labeling,
and pre-processing, significantly reducing the effort required
for deployment and making CLOUSEAU highly adaptable to
diverse and evolving environments.

@ Targeted querying of logs removes the need for pre-
defined attack boundaries. Learning-based systems require
the entire log dataset as input, making it essential to pre-
define the attack boundaries—specifically when the attack
started and ended. CLOUSEAU eliminates this limitation by
producing a targeted query to retrieve events of interest dur-
ing the investigation. Instead of ingesting the entire incident

logs, it retrieves only the log entries relevant to the POIL.
For example, if the POI involves a suspicious IP or file,
CLOUSEAU queries the incident logs for events connected to
the file of interest. This approach ensures that it can handle
distributed and prolonged attacks where malicious activities
might occur sporadically over an extended period, without
needing precise temporal boundaries in advance. By doing
so, CLOUSEAU avoids the noise and inefficiency associated
with collecting excessive logs while ensuring that critical
events are not overlooked.

© Evidence-driven queries minimize error rates.
CLOUSEAU mitigates the high error rates that learning-
based systems still suffer from (as shown in §6) through
its evidence-driven query mechanism. Rather than relying
on pre-trained classification models that are prone to mis-
classifying benign events as malicious, CLOUSEAU uses
iterative and targeted queries based on the context of the
investigation. For example, when the POI is a suspicious
IP, the system generates precise queries to identify related
events, such as connections to other local machines or
communications with external servers. Each query is backed
by specific evidence retrieved from the log database, ensur-
ing that subsequent questions are contextually relevant and
reduce ambiguity. This iterative approach allows us to focus
on genuinely suspicious activities while filtering out benign
events that traditional systems might incorrectly flag. By
doing so, CLOUSEAU significantly lowers the false positive
rate, resulting in more accurate and actionable attack narra-
tives.

4. Approach

CLOUSEAU is a hierarchical multi-agent framework that
automates end-to-end attack investigations without task-
specific fine-tuning or expert-defined heuristics (Figure 1).
Every agent runs the same off-the-shelf, general-purpose
LLM, leveraging its instruction-following skills and exten-
sive security knowledge through in-context learning. The
workflow is split into two phases:

1) Data pre-processing: Raw incident logs are ingested
and normalized into an LLM-friendly, query-able,
structured store (§4.1). This store is exposed via a set of
Question-Answering (QA) agents, providing a natural-
language interface for data retrieval (§4.2).

2) Investigation: A Chief Inspector agent (§4.4) receives
a POI that signals anomalous behavior. It refines this
POI into one or more focused investigative directives
(attack leads) and spawns a dedicated Investigator
agent (§4.3) for each lead. Investigators query the QA
agents, collect evidence, and return concise reports. The
Chief Inspector reviews and merges these findings, and,
when new artifacts surface, issues further leads and
instantiates additional Investigators. This iterative cycle
continues until the full attack narrative is reconstructed.

Scope and Assumptions. We adopt the standard threat
model used in recent work [10], [11]. First, the
log-collection infrastructure is assumed to be tamper-proof,
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Figure 1: Overview of CLOUSEAU. @ Incident logs are parsed and ingested into a structured database, with a set of QA
agents acting as natural-language interface for data retrieval. @ A POI along with the environment context is fed to the
Chief Inspector agent, € to generate attack leads and activate a series of Investigator agents. @ Each Investigator agent
issues questions to the QA agents to find attack-related events. @ These questions are translated into multi-step SQL queries
and returned as simple answers to the original questions @®. Each Investigator compiles its findings into a report on the
given attack lead @. The Chief Inspector continues the investigation iteratively, and at the end @ compiles the Investigator

reports into a single attack report.

so adversaries cannot alter, delete, or fabricate events once
they have been recorded. Second, the pipeline applies robust
input-sanitization defenses that eliminate prompt-injection
attempts against downstream LLM components. Conse-
quently, attacks that compromise the logging system or
poison the LLM via crafted inputs fall outside the scope
of this paper.

4.1. Data Pre-processing

Data pre-processing is a critical component of
CLOUSEAU, enabling the underlying LLM to reason over
incident logs efficiently. Raw event logs are typically
verbose, redundant, and rarely tailored to security analysis.
Our pre-processing pipeline transforms the collected logs
into a structured, query-able representation that highlights
security-relevant signals while suppressing extraneous
noise. Our pre-processing pipeline is built on three key
components:

@ Environment specific pre-processing. No two deploy-
ments are identical: security configurations, logging policies,
and the application stack all vary. A rigid, one-size-fits-all
abstraction of logs either omits valuable evidence or over-
whelms investigators with irrelevant detail. Consider a
single-host laboratory where every action is executed by an
all-privileged user; recording every authentication attempt
or privilege escalation adds little value. Conversely, in a
multi-tenant enterprise, the same events are indispensable
for detecting lateral movement. Recognizing this, we avoid

prescribing a single pipeline. Instead, §5.1 illustrates multi-
ple pipelines demonstrating how CLOUSEAU can be adapted
to different deployment contexts.

® Structured data transformation. To facilitate efficient
data retrieval, we first convert raw incident logs into a struc-
tured, query-able format. Recent general-purpose LLMs
have shown strong performance in automatic SQL gener-
ation and schema reasoning [56], [57]. We leverage this
capability by storing the logs in a relational database. Each
log source is mapped to one or more SQL tables (for dense,
heterogeneous sources), or, conversely, a single table can
merge multiple log sources, yielding an n-to-m relationship,
where n is the number of log sources and m is the number
of tables. During an investigation, we retrieve the schema
of the relevant tables and add them to the prompts of QA
agents. To improve an agent’s understanding of the schema,
and therefore its query accuracy, we enrich the database
metadata (‘CREATE’ statements) with human-written anno-
tations (similar to code comments) describing the table’s
data.

© Demonstrations and contextual descriptions. Each
table is accompanied by a few hand-crafted examples that
translate natural-language questions into valid SQL. During
the investigation, the QA agent is augmented with these
examples as in-context demonstrations, maximizing accu-
rate query synthesis. Because every incident is unique, we
also require an environment context document capturing
site-specific invariants (IP ranges, allowed services, authenti-
cation policies, efc.). This document is added to the prompts
of the Chief Inspector and Investigator agents to give the



LLM the context it needs to flag anomalous behavior reli-
ably.

4.2. Question Answering Agent

An integral component of CLOUSEAU is the QA agent.

Its purpose is to provide the Investigator with a natural-
language interface for retrieving relevant log events without
being burdened by schema-specific details or SQL formula-
tion. Through this question-answering interface, the Inves-
tigator agent simply asks a question. The QA agent then
iteratively retrieves relevant events and returns an answer.
Furthermore, to minimize hallucinations, improve accuracy,
and reduce the risk of malformed queries, we instantiate a
dedicated QA agent for each SQL table produced during
pre-processing.
Agent Design. The QA agent follows the ReAct paradigm
[41]. We implement it with in-context few-shot [40] learning
and role-playing [44], prompting the LLM to think, select
appropriate tools, and reflect on results. The agent’s role
is defined as an ‘SQL expert’ whose task is to answer
questions by querying the database (full template in Ap-
pendix A). The template is augmented with the table schema
in the form of the ‘CREATE TABLE’ statement, including
embedded annotations that describe each column’s seman-
tics. We also include a set of handcrafted exemplars that
map questions to sequences of SQL queries leading to the
final answer. To improve reliability, the agent is instructed
to decompose questions into multiple simple queries rather
than constructing a single complex one, reducing errors and
malformed queries.

In the case of ATLAS scenarios, this instantiation yields
three QA agents: an ‘audit’ agent, a ‘browser’ agent, and
a ‘DNS’ agent. Each agent is equipped with one generic tool
to execute queries, ‘run_gquery (sql)’, and can optionally
be augmented with a set of table-specific tools (akin to
stored procedures). For example, with the ‘audit’ agent we
define two additional tool calls: ‘get_ancestors (pid)’
and ‘get_descendants (pid)’. Although the ‘audit’
agent is able to find ancestors or descendants of a process
with iterative querying, this often repeated task resulted in
the overuse of expensive LLM tokens. As such, we found
the use of stored procedures as tool calls to be quite effective
for repetitive and token expensive tasks.

Memory Management. Managing the context size of LLMs
is crucial: unbounded growth leads to increased hallucina-
tion rates and degrades overall performance [58], [59]. To
manage the agent’s context growth, we cap the number of
queries the agent may issue and abort any query that returns
more than R rows. This mechanism bounds the agent’s
context length by

len < |prompt| + max_queries X R + |answer]|

where R is the per-query row cap after serialization, and
max_queries is the maximum number of SQL queries the
agent may issue. These parameters are configurable and can
be tuned to the model’s context window and the deployment

environment. If a result exceeds R rows, the tool returns
an error prompting the agent to refine the query (e.g., add
‘LIMIT’ or ‘GROUP BY’, or introduce additional predicates).
If the agent exhausts its query budget without producing an
answer, it is instructed to answer based on the information
gathered so far.

Example. Assume an Investigator observes a suspicious
process ‘systempatch.exe’ during the investigation. To
investigate the process, it invokes the ‘audit’ QA agent
with the following task:

Audit QA Agent: Question

Find the execution tree of systempatch.exe (PID 2592) and list all
associated network connections and files.

The schema for the audit table is first fetched, along
with questions-to-queries examples, to construct the agent
prompt and create an instance of the ‘audit’ QA agent.
Guided by the given directive, the agent executes a series
of tool calls:

Audit QA Agent: Tool Calls

get_ancestors (2592)

get_descendants (2592)

run_query (SELECT DISTINCT object FROM

— audit_logs WHERE access = 'CONNECT' AND
— pid = 2592)

run_qguery (SELECT DISTINCT object FROM

— audit_logs WHERE access != 'connect' AND
< access != 'execute' AND pid = 2592)

N J

With every tool invocation, the agent incrementally
builds its answer. The fourth call, however, returns too many
records and triggers a result-length error. The agent then
reformulates the query to fetch only the 20 most-accessed
files. Once the revised results arrive, the agent synthesizes
the final answer:

Audit QA Agent: Answer

The execution tree for the process named systempatch.exe with
PID 2592 is as follows:

o PID 3148, firefox.exe, [timestamp]
e PID 2012, plugin-container.exe, [timestamp]
e PID 744, cmd.exe, [timestamp]

[processes connections]
[Files accessed]

N J

4.3. Investigator Agent

The Investigator agent is at the heart of CLOUSEAU,
charged with uncovering attack-related events and artifacts.
Each run begins with an attack lead, a focused directive that
flags a specific anomaly and defines the scope of the inquiry.
Guided by this lead, the Investigator queries the available
QA agents, iteratively retrieving evidence and refining its



hypotheses. As answers accumulate, the attack narrative
gradually takes shape. When no further avenues remain (or
the question budget is reached), the Investigator compiles a
concise report and returns it to the Chief Inspector.

Agent Design. Mirroring our QA agents, the Investiga-
tor adopts the ReAct paradigm. Its prompt (Appendix A)
defines the agent as a ‘security expert’ tasked with
conducting security investigations. The agent is instructed
to formulate precise, context-rich questions to reveal
attack-related artifacts. To aid the agent in identifying re-
lated attack artifacts, it is instructed to employ ‘backward’,
‘forward’, and ‘correlation’ analyses; it is also in-
structed to report any abnormal activity, even if it lies outside
the current lead, and conclude each investigation with a
concise summary of its findings. Similar to the QA agents,
its question budget is capped at max_questions tool calls,
acting as a means to control the LLM’s context growth.

The Investigator prompt is augmented with an environ-
ment context defined earlier during the pre-processing phase
to aid during discovery, and a set of tools encapsulating
specialized QA agents, each dedicated to a database table
as described earlier (e.g., DNS, browser, audit). Every tool is
accompanied by a description of its data scope and includes
few-shot examples illustrating valid queries. Finally, the
current attack lead is appended to the agent prompt.

The investigation then proceeds iteratively: the agent in-

vokes QA tools, accumulates evidence, incrementally refines
its findings, and discovers new leads along the way. This
cycle continues until all viable hypotheses are exhausted or
the max_questions budget is reached.
Example. Assume the Chief Inspector observes an unrecog-
nized binary ‘systempatch.exe’ in the latest Investigator
report. The Chief Inspector agent dispatches a new Investi-
gator with the following attack lead:

Investigator Agent: Attack Lead

Investigate the process systempatch.exe (PID 2592). Construct its
execution tree, enumerate associated files and network connec-
tions, and flag abnormal behavior observed around its start time.

The Investigator first queries ‘audit’ agent for the
execution tree and network connections made by this pro-
cess. The response reveals an outbound connection to
‘46.11.60.81 . The agent then queries ‘dns’ agent to re-
solve domains mapping to this IP, and queries ‘audit’ again
for any other processes communicating with it. This cycle
continues until no further avenues remain or the question
budget is depleted. The agent finally generates a report of
its findings; for example:

Investigator Agent: Attack Lead Report

The following attack-related artifacts have been identified:

o Process names: systempatch.exe, firefox.exe ...
o Network addresses: 46.11.60.81 ...
e Domains: No domains resolved to 46.11.60.81.

[more findings] ...

The report is returned to the Chief Inspector, and this
instance of the Investigator agent is destroyed. The Chief
Inspector parses this report and may decide to instantiate a
new Investigator with a new lead based on the findings.

4.4. Chief Inspector Agent

At the helm of our framework is the Chief Inspector
agent, which adopts the same ReAct architecture, with
few-shot in-context learning and role-playing prompting,
as in the Investigator and QA agents. It serves two key
functions. First, it directs the overall investigation, repeat-
edly dispatching Investigator agents and refining their tasks
as new evidence emerges. Second, it acts as a safeguard
against hallucinations: by comparing overlapping findings
from different Investigators, the Chief Inspector can detect
and suppress inconsistent or fabricated conclusions.

Its prompt (Appendix A) defines the agent as a
‘security expert’, tasked with identify the attack source,
establish the attack timeline, identify attack objectives, and
finally map the attack to the Cyber Kill Chain. After this,
the agent is given general instructions, to clarify its behavior,
including the assertion that this is an iterative process and an
instruction to investigate thoroughly. The final directive is to
produce a comprehensive report that conforms to the given
task. The agent is provided with the environment context
(the same one that is supplied to Investigator agents) and
given the initial POL

Example. Building on the earlier examples, the
Chief Inspector is initialized with a POI indicating
frequent HTTP connections to suspicious domain
‘official-system-monitoring.xyz’ and is tasked
with investigating this activity. It instantiates an Investigator
with the following lead:

Chief Inspector Agent: POI

Investigate the domain official-system-monitoring.xyz. Identify
every process that connected to it and highlight any abnormal
activity in the same time window.

The Investigator consults its QA agents in turn. It first
resolves the domain to the IP address ‘46.101.68.39°,
then retrieves every connection event that references this
address—knowing that the logs store network endpoints by
IP rather than by domain. Nearing its question budget, the
Investigator makes one final request to the audit QA agent to
construct the execution tree of each connecting process. This
last step surfaces a suspicious binary, ‘systempatch.exe’,
that appears central to the intrusion. The Investigator com-
piles the following report and returns it to the Chief Inspec-
tor:



Investigator Agent: Attack Lead Report

... The execution tree of firefox.exe revealed a suspicious process
systempatch.exe, which was spawned by cmd.exe, a child process
of plugin-container.exe. This suggests potential malicious activity,
as systempatch.exe is not a standard Firefox or Windows process.
The investigation also found that the domain official-system-
monitoring.xyz resolved to the IP address 46.101.68.39, which
was connected to by the firefox.exe and plugin-container.exe
processes.

Further analysis is recommended to determine the nature and in-
tent of the systempatch.exe process and to investigate any potential
security breaches or malicious activities related to the identified
artifacts.

(N J

Following the first Investigator’s findings, the Chief
Inspector instantiates a new Investigator with a lead on
the suspicious process ‘systempatch.exe’. This second
Investigator uncovers an additional attack artifact, a network
address repeatedly connected to, resembling a command-
and-control (C2) server at ‘46.11.60.81". This cycle re-
peats until every path is exhausted or the investigation
budget is reached, after which the Chief Inspector compiles
the final report.

Chief Inspector Agent: Final Attack Report

The investigation began with a report of unusual connections
to the domain official-system-monitoring.xyz. Further analysis
revealed a complex execution tree involving multiple processes,
including firefox.exe, plugin-container.exe, cmd.exe, and system-
patch.exe. The systempatch.exe process, located in a user direc-
tory, is suspicious and may be related to malicious activity.
Attack Artifacts:

e Processes: ...
o Files: systempatch.exe
e Network Addresses:

— 192.168.223.2:53 (DNS server)
— 46.11.60.81:8080 (unknown service) ...
e Domains: official-system-monitoring.xyz
46.101.68.39)
Attack Vector:
The attack vector appears to be a combination of social engi-
neering and exploitation of vulnerabilities in the Firefox browser.
The official-system-monitoring.xyz domain may have been used
to trick the user into installing malware or providing sensitive
information. ..
N\ J

(resolved to

5. Evaluation Setup

In order to thoroughly assess CLOUSEAU’s performance
and capabilities, we structure our evaluation around four key
questions:

1) Comparative Performance: How does CLOUSEAU
perform, end-to-end, compared to state-of-the-art in-
vestigation systems?

2) Keyword Sensitivity: How sensitive are LLM-based
investigators to the naming of attack artifacts?

3) Generalizability: To what extent does CLOUSEAU
maintain its effectiveness when applied to a new oper-
ational environment?

Scenario Attack Type Artifacts POIs  Malicious Benign
S1 Web compromise 3 3 45K 90.5K
S2 Malvertising 3 15K 383K
S3 Spam campaign 6 3 5.1K 123K
S4 Pony campaign 5 3 18K 107K
Ml ‘Web compromise 6 3 8.1K 243K
M2 Phishing 5 3 34K 249K
M3 Malvertising 4 3 34K 299K
M4 Monero miner 6 3 8.2K 250K
M5 Pony campaign 5 3 34K 667K
M6 Spam campaign 6 3 10K 344K
OpTCl1 Plain PowerShell Empire 317 3 37K 1.29M
OpTC2 Custom PowerShell Empire 53 3 36.6K 2.79M
OpTC3 Malicious Upgrade 40 3 8.4K 1.16M

TABLE 1: Overview of the 21 attack scenarios. Artifacts
represent the number of key attack entities, while POIs
denote Points of Interest used for evaluation. Malicious and
Benign indicate the total number of log events.

4) Ablation Study: What is the impact of CLOUSEAU’S
hierarchical, multi-agent architecture compared to a
single monolithic agent?

5.1. Datasets

We evaluated CLOUSEAU on two publicly available
datasets commonly used in network security research. The
first is ATLAS [10], a curated collection of Advanced Persis-
tent Threat (APT) scenarios that span both single-host com-
promises and multi-host environments with sophisticated
lateral movement; each case is accompanied by well-defined
POIs. The second is DARPA’s OpTC engagement [60],
which captures large-scale telemetry from diverse sources
and contains stealthy, heterogeneous attack traces that make
an adversary’s behavior especially difficult to follow. AT-
LAS was chosen because it was built expressly for end-to-
end attack investigation research and has become a standard
benchmark for state-of-the-art systems. We chose OpTC
because it is the latest and most comprehensive DARPA
Transparent Computing (TC) release. Although OpTC was
released for APT detection rather than investigation, it offers
unmatched scale and variety, making it an ideal testbed for
assessing CLOUSEAU’s generalizability. Other datasets from
prior work (e.g. AIRTAG [11]) were either inaccessible or
available only in system-specific, preprocessed formats.

5.1.1. ATLAS Dataset. ATLAS [10] released a publicly
available dataset designed for evaluating attack investigation
systems. It contains a variety of APT attack scenarios,
including both single-host and multi-host setups. The dataset
is structured to facilitate the evaluation of systems like
CLOUSEAU by providing a set of POIs to evaluate end-to-
end investigation systems and enabling the construction of
an attack narrative by identifying key attack artifacts. The
dataset includes a collection of logs from 3 data sources:
Windows Security logs, Browser logs, and DNS server
logs. These logs capture a wide range of events, including
process executions, file accesses, and network connections.
The dataset consists of 10 attack scenarios (Table 1), and we



extend it with 8 additional scenarios designed to represent
more realistic and challenging attacks.

Attack Scenarios. The 10 original scenarios are divided into
two setups: single-host (S1-S4) and multi-host (M1-M6).
Single-host scenarios include attacks confined to a single
machine, while multi-host scenarios simulate more complex
environments where attackers perform lateral movement
after the initial compromise. Despite the differences in setup,
all scenarios share at least three main attack artifacts: a
malicious domain which delivers or “phishes” an exploit, a
C&C server, and a malicious executable. These three attack
artifacts are consistent across all scenarios and are utilized
as initial POlIs.

Extended Scenarios. We created 4 additional scenarios
(SE1-SE4) based on the single-host setups (S1-S4) to sim-
ulate more realistic attack settings. Specifically, we intro-
duced two key adjustments. First, in the original scenarios
(Figure 2a), both the malicious domain and the C&C server
share the same IP address, which simplifies artifact connec-
tions. To increase the complexity, we assigned a different
IP address to the C&C server (Figure 2b), introducing a
semantic gap that makes it more challenging to link the
malicious domain, executable, and C&C server. Second, the
original scenarios assume the attacker operates within a local
network, using a private IP address (‘192.168.223.3"), a
common configuration in test environments. However, this
setup makes traffic to the private address inherently suspi-
cious, overly simplifying the attack investigation task. To ad-
dress this, we replaced the private address with two distinct
public IP addresses hosted by well-known, cost-effective
cloud providers. One IP is used for the web service resolved
by the malicious domain, and the malicious executable uses
the other to connect to the C&C server, simulating common
tactics seen in modern attack campaigns. These modifica-
tions were implemented using automated scripts that logged
every step for easy auditing and one-click reproducibility.

Keyword Sensitivity Scenarios. We also introduce 4
scenarios (SS1-SS4) based on extended scenarios (SEI1-
SE4) to evaluate the sensitivity of an investigation sys-
tem towards the naming of the attack artifacts. In the ex-
tended scenarios, the name of the artifacts for the domain
(‘Oxalasheel.com’) and the executable (‘payload.exe’)
are inherently suspicious; their mere presence in the under-
lying LLM prompt is often enough to identify them as part
of the attack. Similarly, a traditional investigation system
may detect them easily via a blacklist of suspicious names.
To test whether this naming alone influences detection, we
further synthesized modified attack scenarios based on the
extended attack scenarios by replacing the malicious domain
with ‘official-system-monitoring.xyz’ and the ma-
licious executable with ‘systempatch.exe’. In addition
to the semantic gap introduced in the extended scenarios,
this change is expected to make the identification of attack
artifacts even more challenging.

ATLAS Pre-processing. We transform the raw Windows
Security, DNS proxy, and Firefox developer logs into three
structured SQL tables: ‘audit_logs’, ‘dns_logs’, and

‘browser_logs’. The ‘audit_logs’ table records times-
tamped audit events, including the process’s unique ID,
the access type (e.g., read, write, execute), and the object
involved, among other fields. The ‘dns_logs’ table stores
DNS resolution requests together with their corresponding
answers. The ‘browser_logs’ table captures browsing ac-
tivity as HTTP requests, including the URL, method, status,
and timestamp.

5.1.2. OpTC Dataset. The DARPA TC program was
launched to advance high-fidelity monitoring and analy-
sis for detecting APTs. To underpin this effort, DARPA
has released several benchmark datasets, including E3 and
E5 [61], as well as the most recent Operationally Trans-
parent Cyber (OpTC) corpus. OpTC contains enterprise-
scale telemetry from various sources, including kernel audit
records, DNS and HTTP logs, and network flow data. Its
comprehensive logging and three multi-host attack scenarios
make it a strong testbed for evaluating attack investigation
systems. Adapting OpTC for attack investigation is not a
straightforward process. The ground-truth reports are coarse-
grained, listing only a subset of malicious process identifiers
and a broad activity timeline, and the dataset lacks explicit
POIs required for unbiased evaluation. In the following, we
outline our labeling strategy and explain how we convert
OpTC into a systematic benchmark for investigation exper-
iments.

OpTC Cases. The dataset comprises three independent
attack scenarios (OpTC1-OpTC3, Table 1), with no overlap
between them.

« Plain PowerShell Empire: A user is tricked into run-
ning a malicious batch file, leading to host compromise,
C2 communication, and lateral propagation.

o Custom PowerShell Empire: A phishing email with
a weaponized Word document exploits ‘word.exe’,
escalates privileges, spreads via Active Directory, gains
administrative rights, and exfiltrates data.

o Malicious Upgrade: An external software update
server is hijacked; the client downloads a malicious
patch, establishes a foothold, escalates privileges, and
moves laterally.

For each scenario, we select three POIs: one at the be-
ginning of the attack, one during the middle phase, and one
at the final (exfiltration) stage to represent realistic detection
opportunities for IDS/EDR systems. Given the scale of the
attacks and their back-to-back execution, we included only
logs from the initially compromised host and only for the
day of compromise, following the evaluation methodology
of prior work on OpTC [62]. While labeling every machine’s
logs would require extensive effort, focusing on the initial
breach allows us to demonstrate CLOUSEAU’s effectiveness
on the most critical segment of the attack timeline and
suffices for the purpose of generalizability assessment.
Data Annotation. The OpTC dataset lacks built-in labels
for attack artifacts, so we manually annotated the logs
using the ground-truth reports. Earlier work [62] released
a list of malicious process UUIDs but did not describe their
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Figure 2: SE1 adds a semantic gap that makes linking the executable with its malicious domain/IP harder than in S1.

labeling method; as also observed by [63], that list proved
to be incomplete and occasionally inaccurate. Consequently,
we relied on the ground-truth report, which specifies the
attacker’s root Process IDs (PIDs) and provides a detailed
timeline of the intrusion. We discarded any processes created
outside the documented attack window, removed all pro-
cesses explicitly identified as malicious (together with their
descendants), and manually inspected the remainder for ties
to the attack. For each root malicious process, we propagated
the malicious label to all of its child processes, following the
approach of [10]. Every event generated by these processes
was then marked as malicious. While this strategy may miss
some malicious actions or mislabel benign ones, it offers
a systematic and defensible procedure in the absence of
explicit dataset labels.

OpTC Pre-processing. We process the raw logs into five
structured SQL tables: ‘processes_logs’, ‘flow_logs’,
‘files_logs’, ‘dns_logs’, and ‘http_logs’. The
‘processes_logs’ table captures process creation and
termination events with the timestamp, process ID, pro-
cess name, and command line. The ‘flow_logs’ table
records each process’s network activity along with the vol-
ume of data transferred. The ‘files_logs’ table records
each process’s file activity, such as reads, writes, deletions,
and renames. The ‘dns_logs’ table stores DNS resolu-
tion requests together with the corresponding answers. The
‘http_logs’ table stores HTTP request and response head-
ers, including the URL, method, status, and timestamp.

5.2. Experiment Design

5.2.1. Baselines. We compared CLOUSEAU to two baselines
representing the state-of-the-art in learning-based investiga-
tion systems, ATLAS [10] and AIRTAG [11]. To the best
of our knowledge, these are the only recent deep-learning-
based attack investigation systems that are publicly avail-
able, peer-reviewed, and evaluated on the same ATLAS

scenarios. ATLAS constructs a causal graph from incident
logs using the given POI, then uses a pre-trained LSTM
model to classify nodes as malicious or benign by inspecting
event sequences, dynamically expanding the graph with new
attack-related entitles. The attack story is then extracted
from the graph. AIRTAG, on the other hand, directly pro-
cesses raw logs without building a graph. It uses a BERT-
based model to represent log entries, followed by an OC-
SVM to flag suspicious activity. Both the representation
learning model and OC-SVM are pre-trained on historical
attack scenarios. Detected artifacts are linked to reconstruct
the attack story. In both cases, we used the authors’ publicly
available code and artifacts to reproduce their results and
made sure the results matched what was published.

5.2.2. Implementation. We implemented CLOUSEAU using
Python and Langchain’s LangGraph framework to articulate
the behavior of the agents. The interaction between the
agents and their environment is enabled by the backbone-
LLM’s ability to perform tool-calling [41], [64], which is
a crucial paradigm in contemporary LLM agents. We use
SQLite to store the processed logs and execute SQL queries
against this database. To automate the process of evaluation,
we parse CLOUSEAU’s attack report with an LLM-based
evaluation agent, tasked with extracting attack artifacts into
a specific JSON format. The artifacts are extracted from
this structure and used to classify log entries (refer to
Appendix B for more details), similar to how [10] and [11]
evaluate their systems. We utilize GPT4.1-Mini [65] as
the backbone LLM, which is a cost-effective model that
supports tool-calling. We also evaluate CLOUSEAU using
two other open-weight models: DeepSeek-v3 [66] and
LLaMA-3.3 [29]. The choice of these models is due to their
stable performance, their support for tool-calling, which is
essential for our implementation, and the relative cost of
inferencing compared to GPT4.1-Mini. We set the tem-
perature to O for all models to increase determinism, even



though it cannot be guaranteed [67]-[69]. The maximum
number of investigations, questions, and queries are set to
10 each. Each LLM call is capped at 2k generated tokens.
The limit of 10 yields a maximum of 20k generated tokens
per agent, leaving room for retrieved results, agent prompts
and metadata, keeping the context length below 32k>.

5.2.3. Evaluation Methodology. For every attack scenario
we begin an investigation from each of the three predefined
POIs, producing three independent runs per scenario. After
each run we compute precision, recall, and their harmonic
mean (F1). Metrics are computed over log entries from
artifact lists. Each scenario defines ground-truth malicious
artifacts (e.g., domains, executables), and every log entry
is labeled as malicious or benign depending on whether it
contains such artifacts. After completing an investigation,
each evaluated system outputs a list of predicted malicious
artifacts. We propagate these predictions to log entries using
the same matching rules as the ground truth. Comparing
predicted and ground truth at the log level yields the scenario
TP, FP, TN, and FN and finally the recall, precision and
F1. Averaging these metrics across the three POIs yields a
single, balanced score that reflects performance regardless
of the starting POI. This differs from the evaluation protocol
in ATLAS, which samples one random POI and reports the
metrics for that single starting point only. AIRTAG is POI-
agnostic and therefore runs once per scenario. Its original
paper reports only the true-positive and false-positive rates
(TPR and FPR). We include those numbers for completeness
but also report precision, recall, and F1. F1 is essential
because it exposes imbalances that a recall-heavy yet low-
precision system can hide behind a superficially attractive
TPR, while the accompanying FPR shows how that im-
balance manifests in false alarms. Using the full trio of
precision, recall, and F1 aligns our study with most recent
work in attack investigation and provides a clearer view of
each tool’s strengths and weaknesses [10], [11].

The benchmark covers 21 scenarios, each with three
POIs, for a total of 63 distinct investigations. Listing met-
rics for every individual run would overwhelm the reader,
so we present results averaged by scenario type: single-
host attacks, multi-host attacks, single-host extended attacks,
artifact-naming-sensitivity attacks, and the OpTC cases. Fi-
nally, LLMs introduce inherent nondeterminism, as noted
by prior studies [67]-[69]. To obtain stable estimates we
execute CLOUSEAU three times on each investigation and
report the average of the resulting metrics.

6. Evaluation Results

6.1. Comparative Performance

Table 2 reports the mean F1, recall, and precision for
CLOUSEAU and the state-of-the-art baselines, averaged in-
side three test categories: Single-Host (S1-S4), Multi-Host

2. Many providers enforced a 32k maximum context window at the time
of our experiments.

Experiment System Recall  Precision F1
ATLAS 69.26 51.78 41.71
Single-Host AIRTAG 99.73 51.18 65.94
CLOUSEAU  99.65 99.93 99.79
ATLAS 77.19 54.91 46.88
Multi-Host AIRTAG 99.86 48.62 64.12
CLOUSEAU 98.74 96.47 97.37
ATLAS 79.58 49.30 45.41
Single-Extended  AIRTAG 98.98 55.32 69.46
CLOUSEAU  99.64 99.93 99.79

TABLE 2: Investigation performance on the ATLAS dataset
across attack categories. Metrics are percentages. Values in
bold indicate the best score per metric within each experi-
ment block.

(M1-M6), and Single-Host-Extended (SE1-SE4). Figures
3a, 3b, and 3c complement the table by displaying the FPR,
TPR, and F1 scores for each scenario. For each baseline, we
followed its original cross-scenario protocol: the model for
a given test case was trained on all remaining scenarios in
the same category; for example, S1 was tested with a model
trained on S2-S4. The Single-Host-Extended runs reused the
models trained on S1-S4, which allows us to measure how
sensitive the baselines are to subtle changes in workload.
This training applies only to ATLAS and AIRTAG.

Three findings stand out. First, CLOUSEAU provides
consistently high-quality end-to-end investigations, with its
mean scores approaching perfection in all three scenario cat-
egories. Second, CLOUSEAU achieves these results without
any task-specific training, yet it still outperforms the best
baseline by more than 30% in F1 across every category.
Third, both baselines fall short of their reported promise.
A code-level review and inspection of their raw outputs
confirmed that the reproduced numbers are correct. ATLAS
performs well only when the starting point is a malicious
domain; with other points of interest, it misses key attack
artifacts, an issue already noted by Ding et al. [11]. AIRTAG
locates nearly all malicious events (Figure 3b) but does
so by generating many false alarms (Figure 3a); cross-
checking the true-positive, true-negative, false-positive, and
false-negative sets in the official repository verified this be-
havior. Although the resulting low precision limits AIRTAG
as a stand-alone investigation tool, its high recall can still
help analysts narrow an otherwise overwhelming dataset to
a more manageable subset.

6.2. Keyword Sensitivity

Table 3 compares CLOUSEAU with a naive SINGLE-
AGENT baseline. This baseline keeps the same data pre-
processing pipeline but collapses the architecture by merg-
ing the QA, Investigator, and Chief Inspector roles into a
single LLM agent. This flattening removes the multi-agent
coordination and the hierarchical architecture that power
CLOUSEAU’s reasoning. We test both systems on three
language-model backends: the proprietary GPT4.1-Mini
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Figure 3: Attack investigation results for individual ATLAS scenarios.
Model System Recall Precision F1 Model System Recall Precision Fl1
. . CLOUSEAU 99.8 99.9 99.8 . . CLOUSEAU 93.6 96.0 94.2
PT4.1-M PT4.1-M
G "M SINGLE-AGENT ~ 95.5 982 958 G "™ SINGLE-AGENT 832 955 845
CLOUSEAU 99.4 97.3 98.3 CLOUSEAU 69.2 81.7 69.4
LLaMA-3.3 LLaMA-3.3
SINGLE-AGENT 89.8 96.0 89.6 4 SINGLE-AGENT 64.9 85.2 66.9
CLOUSEAU 98.3 99.7 98.3 CLOUSEAU 80.5 91.2 83.9
D k-V D k-
cepSeek-V3 - INGLE-AGENT 818 946 822 eepSeek-V3 G INGLE-AGENT 729 888  76.7

TABLE 3: Sensitivity to suspicious artifact naming across
three model backends, comparing CLOUSEAU with a
SINGLE-AGENT baseline. Metrics are percentages; values
in bold indicate the best score per model.

and the open-weight LLaMA-3.3 and DeepSeek-V3, to
gauge robustness across different models.

Three observations stand out. First, CLOUSEAU almost
completely offsets the effect of adversarial renaming: across
the three backends it maintains precision, recall, and F1
above 98.3%, essentially matching its performance in the
extended scenarios. Second, the baseline is sensitive both
to the renaming of artifacts and to the choice of back end.
Its F1 falls from 95.8% on GPT4.1-Mini, to 89.6% on
LLaMA-3.3, and to 82.2% on DeepSeek-V3. Third, inspec-
tion of the raw traces shows that the SINGLE-AGENT in-
creasingly hallucinates links and events as the investigation
timeline lengthens. This is largely attributed to incorrectly
generated SQL that either returns empty results, giving the
false impression that events never occurred, or introduces
spurious joins that imply nonexistent relationships, as re-
ported in recent text-to-SQL studies [70], [71], whereas
CLOUSEAU’s hierarchical debate consistently filters out un-
supported inferences. These results confirm that robustness
to malicious renaming stems from structured multi-agent
reasoning rather than superficial keyword spotting or quirks
of a particular language model.

6.3. Cross-Environment Generalizability

Having demonstrated strong performance on the ATLAS
benchmark, we next test CLOUSEAU on OpTC, a dataset
designed with longer timelines, subtler signals, and delib-
erately obfuscated tactics. We exclude ATLAS and AIRTAG
from this test because they require training data that mirrors
the test environment, and OpTC provides too few attack

TABLE 4: Performance on OpTC scenarios. Metrics are
percentages; bold indicates the best score per model.

cases to create a fair train—test split for them. Moreover, the
substantial effort involved in adapting these systems to new
environments could inadvertently bias the evaluation against
them. This evaluation therefore addresses two questions: (i)
How reliably can CLOUSEAU reconstruct evasive, hard-to-
detect intrusions, and (ii) How much benefit does an agentic
architecture provide in these more complex scenarios rela-
tive to a single agent approach. As Table 4 shows, the agen-
tic design markedly improves the LLM’s sufficiency relative
to the baseline; the proprietary LLM (GPT4.1-Mini) retains
strong performance on complex cases whereas current open-
weight models (i.e. LLaMA-3. 3 and DeepSeek-V3) do not,
highlighting a privacy—performance trade-off.

7. Discussion

Limitations. Like any system that relies on pretrained
LLMs, CLOUSEAU inherits three well-known risks: hallu-
cinations, prompt injection, and privacy leakage. Halluci-
nations become more likely as the context window grows
[72]. CLOUSEAU reduces this risk by capping tool calls,
questions, and overall turns so the prompt never balloons,
and by having the Chief Inspector cross-check overlapping
Investigator reports and discard contradictions; these safe-
guards cut hallucinations markedly relative to the ablation
agent (Sections 6.2 and 6.3), yet a thorough qualitative
audit and the integration of specialized defenses such as
verification chains and critic models [73]-[75] are deferred
to future work. CLOUSEAU assumes that its backing LLM
is resilient to prompt-injection attacks, an assumption that
may fail if adversaries embed malicious instructions in file
names (e.g., ‘ignore this event.txt’) or HTTP head-
ers; detection and repair techniques are emerging [76]—[80]



but remain outside the scope of this work. Forensic logs
often contain sensitive data that organizations are unwilling
to send to proprietary cloud-based models. This drives the
need for open-weight (self-hosted) LLMs, which reduce
data-exposure risks but may trail behind proprietary models
in accuracy and efficiency (Tables 3 and 4). In this case,
CLOUSEAU can be deployed as a decision-support assistant
with a human analyst in the loop. The analyst oversees
each investigative step, combining the privacy benefits of
local deployment with human judgment to offset any loss
in model quality.

Potential Applications. CLOUSEAU can (i) operate fully
autonomously, turning raw events into complete attack nar-
ratives, or (ii) act as an investigation copilot that suggests
next steps for analysts to accept or refine. When integrated
into SIEMs, it streamlines triage, eases alert fatigue, and
accelerates threat detection and response. Although using
CLOUSEAU as-is for alert triage can be excessive because
its objective is narrative reconstruction, whereas triage typ-
ically aims for a rapid accept-or-escalate decision. Practical
deployments in such settings must therefore account for
runtime and scalability.

Runtime and Scalability. CLOUSEAU’s end-to-end la-
tency is dominated by LLM inference; data retrieval and
other factors are comparatively negligible. Investigation
time can be minimized by bounding budgets for investiga-
tions, questions, and queries. Throughput scales by running
CLOUSEAU agents in parallel across POIs, attack leads, and
questions, with caching to reduce unnecessary LLM invo-
cations. When near real-time operation is required, lower-
latency inference via smaller models, specialized hardware,
or real-time APIs help the system keep pace with the work-
load.

8. Related Work

Attack Investigation. Existing works on attack investigation
typically follow two main paradigms: heuristic-based and
learning-based approaches. Heuristic-based solutions con-
struct large causal graphs of system entities [9], [21], [23],
[81], [82] and rely on heuristics or domain-specific rules to
make these graphs tractable [2], [3], [24], [26], [83]. For
example, Xu et al. [3] propose a graph optimization frame-
work that segments the graph into communities, compresses
them by eliminating redundancies, and prioritizes events
within the compressed communities based on metrics such
as their relevance to the POI and their uniqueness. While
these heuristics can reduce the sheer graph size, they require
intensive expert oversight and must be continually updated
to remain valid against new or evolving threats. In contrast,
learning-based methods shift the burden away from manual
heuristic design toward constructing large labeled datasets
for model training [10]-[12], [84]. For example, Alsaheel
et al. [10] propose to transform audit and application logs
into causality graphs, and train an LSTM model to classify
entities within the graph as malicious or benign. Although
this mitigates some of the rule complexity, it introduces

another form of overhead, as data collection, labeling, and
retraining become recurring tasks. CLOUSEAU differs from
both approaches by using LLMs to reason over event logs
without relying on heuristics or large labeled datasets. Con-
current work by Aly et al. [85] reconstructs APT narratives
by detecting anomalous subgraphs with a GNN and then
using an LLM to reconstruct narratives, highlighting the
growing role of LLMs in reducing analyst effort.

LLMs for Security. LLMs have demonstrated impres-
sive capabilities across numerous fields such as language
translation [86]-[89] and code generation [90]-[93]. Their
success has inspired security researchers to explore how
these models can tackle complex security challenges such as
malicious code detection [94], [95], intrusion detection [96]—
[100], and penetration testing [101]-[104]. Zahan et al. [94]
demonstrated how in-context learning can be harnessed to
flag malicious npm packages by analyzing package code. Li
et al. [96] proposed an LLM-based NIDS that consolidates
outputs from multiple sources (e.g., ML-based detection
modules and external threat intelligence) to refine classifica-
tion decisions. Deng et al. introduced PENTESTGPT [103],
which applies in-context learning on LLMs to automate
penetration testing.

Agentic Investigation Beyond Security. Hierarchical,
multi-agent powered by LLMs approaches have been pro-
posed for a variety of domains [105]-[109]. For instance,
Swanson et al. proposed Virtual Lab [105], an automated
scientific research system. Virtual Lab consists of a lead
agent that oversees the task (akin to Chief Inspector), with
a team of specialized agents (e.g., chemist, computational
scientist) guided by human feedback. These works suggest
that role-specialized, agentic workflows are effective beyond
security as well.

9. Conclusions

In this work, we introduced CLOUSEAU, an LLM-based
hierarchical multi-agent framework for cyber incident in-
vestigation. CLOUSEAU separates the task into three roles: a
Chief Inspector that leads the investigation, Investigators that
pursue targeted leads, and a Question-Answering agent that
handles data retrieval. Evaluation across 21 attack scenarios
suggests CLOUSEAU is capable of constructing the attack
narrative with high recall and precision, significantly out-
performing state-of-the-art learning-based systems on end-
to-end metrics.
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Appendix A.
Prompts

We list here the main agents’ prompts (Prompt 1, 2, 3,
and 4) we used throughout our implementation to produce
our results. Prompt variables are denoted as ‘{variable}’
and are substituted at runtime during agent instantiation.



Appendix B.
Evaluation of Attack Reports

To automate the process of evaluation, we utilize an
LLM tasked with extracting the attack artifacts from an
attack report generated by Chief Inspector. The LLM is
given a JSON structure to follow (see Prompt 4). We parse
the generated JSON using python and compile them into a
malicious artifact list. We propagate this prediction as done
during labeling, yielding a binary prediction array. Compar-
ing this array against the ground-truth labels produces the
final TP, FP, TN, and FN.

QA Agent Prompt

You are an SQL expert assigned to answer questions related to
security incidents by querying an SQLite database. Break down
the task into multiple simple SQLite queries instead of one com-
plex query. Use only the provided tables and columns. Analyze
the query results and provide a clear, concise answer based on the
retrieved data. If the data is insufficient or the question cannot be
answered, clearly explain why.

Schema: {schema}

Examples: {examples}

Reply with a tool call or your final answer to the question. You
are allowed to perform {max_queries} queries. Although you will
be given a specific question to answer, you have to report any
abnormal behavior you find within the data, even if it is not related
to the question.

Question: {question}

Prompt 1: QA agent prompt.

Investigator Agent Prompt

You are a security expert tasked with conducting a security
investigation using provided data sources and analysis tools. These
tools act as abstraction layers, allowing you to query log data
directly. Your responsibility is to formulate precise and context-
rich questions to effectively utilize these tools. Identify attack
related artifacts, such as process names, their PIDs, files, network
addresses, and domains used by the attackers. The evaluation of
your report will be based on the accuracy and relevance of the
identified artifacts. You will be presented with the logs of a single
machine.

Guidelines:

o Clearly specify all relevant details within your questions
(e.g., exact timestamps, IP addresses, process names). Do
NOT assume tools are aware of contextual information
about the investigation.

e You may perform up to {max_questions} queries.

o Use backward analysis (tracking events back in time), for-
ward analysis (tracking subsequent activities), and correla-
tion methods (e.g., timing, data volume) to identify entities
related to the attack.

o Although you will be given a specific task to investigate,
you have to report any suspicious activity you find, even if
it is not related to the task.

e Conclude your investigation by summarizing findings
clearly.

Environment: {environment}
Attack Lead: {initial message}
- J

Prompt 2: Investigator agent prompt.

Chief Inspector Prompt

You are a security expert tasked with analyzing a security incident
on a single compromised machine. Your goal is to clearly identify
the attack source, establish a timeline of attack events,determine
attack objectives, and map the attack to the cyber kill chain.
You will receive a message from monitoring team as a starting
lead, environment context, and given access to the compromised
machine logs. Your analysis must clearly list attack artifacts
such as process names and their PIDs, Files involved, Network
addresses (IPs) and attacker-controlled domains.

Instructions:

o This is an iterative process, with each investigation you will
find new artifacts and leads, investigate each one thoroughly,
leave no stone unturned.

e Be aggressive in your investigation, do not stop until you
have inspected all attack artifacts you found and have
exhausted all possible leads.

e You will be allowed to conduct a maximum of
{max_investigations} investigations, you will be prompted
to stop when we hit this limit.

e At the end, reflect on ALL the reports you received from
your investigators and produce a final report.

e Your final report should include all details of the attack you
found, including the starting point, attack vector, timeline,
and objectives.

e Your final report will be evaluated based on accuracy,
clarity, and correctness of identification of attack artifacts.

o For attack related processes, include their PIDs in the final
report.

e When reporting domains, include IP addresses associated
with them.

e Think and reflect on each report you receive, and then
decide what to do next.

Environment: {environment}
Message from SOC: {initial_message}
N J

Prompt 3: Chief Inspector agent prompt.

Evaluation Agent Prompt

You will be provided with a security investigation report. Your
task is to summarize the investigation findings for evaluation
purposes. Focus on artifacts directly related to the attack, such
as malicious websites, network addresses, files, or processes
controlled by malicious actors. Make a distinction between ma-
licious (spawned and executed by malicious actor) and legitimate
processes (existing benign processes, that were used in the attack),
for the latter, include the time they were hijacked if possible.
Response Format: Return the summary in JSON format as a
list of objects, with the structure below. Example:
{
"addresses": ["10.20.30.40"],
"domains": ["mal_domain.evil"],
"files": ["mal_file.rtf"],
"malicious_processes": |
{"pid":218, "name":"mall.exe"}
] r
"tainted processes": |
{"pid":2191,
"name": "word.exe",
"hijack_time": "2019-08-09 00:00:58"}
I
}
Investigation Report:
{attack_report}
N J

Prompt 4: Evaluation agent prompt.



