
Deep Latent Defence
Giulio Zizzo∗†, Chris Hankin∗†, Sergio Maffeis† and Kevin Jones‡

∗Institute for Security Science and Technology (ISST), Imperial College London
†Department of Computing, Imperial College London

‡Airbus
g.zizzo17@imperial.ac.uk c.hankin@imperial.ac.uk sergio.maffeis@imperial.ac.uk kevin.jones@airbus.com

Abstract—Deep learning methods have shown state of the art
performance in a range of tasks from computer vision to natural
language processing. However, it is well known that such systems
are vulnerable to attackers who craft inputs in order to cause
misclassification. The level of perturbation an attacker needs
to introduce in order to cause such a misclassification can be
extremely small, and often imperceptible. This is of significant
security concern, particularly where misclassification can cause
harm to humans.

We thus propose Deep Latent Defence, an architecture which
seeks to combine adversarial training with a detection system.
At its core Deep Latent Defence has a adversarially trained
neural network. A series of encoders take the intermediate layer
representation of data as it passes though the network and project
it to a latent space which we use for detecting adversarial samples
via a k-nn classifier. We present results using both grey and
white box attackers, as well as an adaptive L∞ bounded attack
which was constructed specifically to try and evade our defence.
We find that even under the strongest attacker model that we
have investigated our defence is able to offer significant defensive
benefits.

Index Terms—machine learning, adversarial examples, security

I. INTRODUCTION

With deep learning systems showing impressive results, and
their continued adaptation in areas from autonomous vehicles
[1], disease detection [2], and cyber security [3] their security
and integrity is of increasing importance.

Unfortunately, deep learning methods have shown to be brit-
tle against attack, and even with imperceptible perturbations
a machine learning system can cause misclassification with a
high degree of confidence [4]. This is now extending beyond
images, with adversarial samples being created for audio [5],
cyber [6] [7], and reinforcement learning [8] domains.

Therefore there is a need for machine learning capabilities
to provide reliable and secure predictions in an adversarial
environment. There have been many approaches investigated
in the literature, from adversarial training [9], Bayesian de-
tection mechanisms [10], input processing [11], and provable
guarantees [12]. However, so far there has not been a defensive
mechanism that offers scalable and robust defences to all
possible attacks.

In this paper we investigate a method by which we combine
adversarial training and a new detection mechanism. Our

This work was funded by an Industrial CASE studentship jointly between
the UK Engineering and Physical Science Research Council (EPSRC) and
Airbus.

defensive mechanism projects the intermediate layer output
from a neural network to a lower dimensional latent space
created by an encoder. By crafting the latent space to cluster
the classes according to the L2 distance we can apply a k-
nn algorithm to compare the training data embeddings to test
time samples. Test time samples which are surrounded by
training data of a different class are regarded as suspicious and
declared adversarial. When combined with adversarial training
this proves challenging for an adversary to optimise over and
we show high levels of robustness.

The contributions of this paper are as follows:
• We propose a defensive method which effectively com-

bines adversarial training with detection based on predic-
tion credibility utilising intermediate layer information.

• We evaluate the defence against a range of attackers
of different strengths, including one specifically tailored
towards circumventing our defence.

II. BACKGROUND

A. Neural Networks

A neural network is a function, F , which uses learned
parameters θ to map input x ∈ Rn to output y ∈ Rm.
The output y in the case of classification is a probability
distribution over m classes, and the highest probability is taken
as the predicted class of input x, i.e C(x) = arg maxF (x).
In classification the cross entropy loss is frequently used as
a minimisation objective to guide the optimisation of the
parameters. During the testing phase the neural network makes
predictions on data presented to it. It is at this stage that an
attacker can construct evasion attacks which are consistently
misclassified despite the data retaining the original semantic
significance.

B. Adversarial Examples

A attacker goal when attacking a classification network is
when given a legitimate test example x, to construct an input
x∗ such that C(x∗) 6= C(x). The adversarial sample x∗ is
defined to be “close” to the test sample it was constructed
from according to some distance metric d(x, x∗). The case of
C(x∗) 6= C(x) would represent an untargeted attack while a
targeted attack aims to make C(x∗) = t when t 6= C(x).

To define a complete attacker one needs to specify 1) the
knowledge the attacker has regarding the system, 2) the level
of perturbation allowed, and 3) the algorithm employed in

ar
X

iv
:1

91
0.

03
91

6v
1

 [
cs

.L
G

]
 9

 O
ct

 2
01

9

crafting the adversarial samples. We shall go into each in more
detail below.

C. Attacker Knowledge

The attacker knowledge places constraints on the available
techniques that can be used for adversarial sample crafting. On
one end, white box attackers have access to all of the model
parameters, thresholds, random seeds, as well as the training
and testing datasets. On the other hand, black box attackers do
not know the model architecture or parameters. Between these
two extremes lie grey box models which are most commonly
defined as an attacker which is not aware of any defensive
mechanism in place [13] [14].

D. Perturbation Levels

The attacker is usually limited in the amount of perturbation
that can be added to an input. This is generally defined to be
limited by some Lp norm. Commonly used norms are the L∞,
L0, or L2. The L∞ norm determines the maximum change that
can be applied to any feature. The L0 norm specifies the total
number of features that can be altered. Finally the L2 norm
represents the euclidean distance between the input that the
attacker starts with and the adversarially crafted sample.

In the case of the image domain, there is an acknowledged
deficit in these norms to describe human perception [15].
Adversarial attacks can be crafted with translation and rotation
[16] or patches [17] which would have extremely large Lp
norms and yet be indistinguishable when viewed by a human.
Obtaining more meaningful and security motivated constraints
is an active area of research and we consider it beyond the
scope of this work.

E. Crafting Algorithms

There is a wide range of attack algorithms which have
been developed. Here we will go over the methods which
are available to an attacker which has access to the model
parameters and can thus obtain gradient information although
weaker gradient free attacks are possible [18].

1) One Step Methods: One step adversarial attacks involve
crafting an input to maximise a loss function in a single step
proportional to the sign of the gradient [19]. This method is
named the Fast Gradient Sign Method (FGSM) and is defined
as,

x∗ = x+ εsign(∇xJ(θ, x, y)) (1)

where J is the neural network’s loss function. The parameter
ε determines the level of perturbation added to the input.
Despite its speed and simplicity, against and undefended
network it can cause severe loss in accuracy.

2) Iterative Methods: Iterative methods repeatedly apply
the gradient sign with a step size determined by α,

xt+1 = xt + αsign(∇xJ(θ, x, y)). (2)

This type of attack is much stronger then the single step
method and networks which have been defended against the
FGSM can be vulnerable to iterative attacks.

3) Optimization Methods: Optimisation methods directly
optimise the distance between the real and adversarial example
as well as target misclassification. One of the more advanced
methods as proposed by [20] solves:

arg min
x∗

||x∗ − x||p − cf(x∗, y), (3)

where f is a function chosen so that f(x∗, y) ≤ 0 only if
the target network misclassifies x∗ and p is the chosen norm.
The parameter c acts as a weighting term. This formulation
will generally cause the misclassified sample to have a lower
distortion.

III. DEFENCES

There are two broad strategies being researched for combat-
ing adversarial samples. The first, aims to directly make the
underlying neural network inherently robust, while the second
seeks to detect adversarial samples.

A. Adversarial Training

Adversarial training was introduced in [19] and uses the
FGSM to augment the network’s loss function to

J̃(θ, x, y) = αJ(θ, x, y) + (1− α)J(θ, x∗, y) (4)

where α is a hyperparameter set to 0.5. This defence trains
the network on both normal and adversarial examples however
it can be broken if the attacker uses a more sophisticated attack
even when operating under the same L∞ norm. A very robust
evolution of the defence was proposed in [9] where attacks are
crafted using an iterative method and a neural network trained
on them.

The weakness of adversarial training methods is that they
strongly prescribe the type of attacker to which they are robust
to. If an attacker introduces a different distortion metric, or a
slightly larger perturbation than expected, then the level of
defence offered rapidly drops.

B. Detection by Uncertainty

A class of detection methods use uncertainty estimates.
Neural networks do not by default give reliable uncertainties
associated with a given prediction. There is a belief that the
final softmax outputs of a neural network represent model
confidence, however the softmax outputs are poorly calibrated
and often give misleading interpretations.

There have been many approaches recently in building
Bayesian neural networks to obtain principled uncertainty
estimates. One of the most widely used approaches to tackling
this problem was proposed by [21] and used dropout at test
time and examined the variation in softmax outputs as a
uncertainty metric. Drawbacks with such an approach are that
it is known to underestimate the uncertainty [22]. However,
Bayesian methods are showing promising results in certain
areas. For example although adversarial samples that evaded
the defence in [23] can be created, they required a large level
of distortion [24].

Most related to our work is [25] which introduced the
idea of applying a distance measure between the training and
test data throughout the neural network’s intermediate layers.
Should test time data deviate significantly from the training
data distribution then it is marked as low credibility and
declared adversarial. We extend and modify these principles to
provide a high level of defence against a range of adversarial
attacks.

IV. DEEP LATENT DEFENCE

We now seek to investigate whether adversarial training
and prediction uncertainty can complement each other. Fre-
quently, detection based approaches can achieve extremely
high detection accuracies. However, they are usually found
to be flawed in some respect, as several detection schemes
are then broken or fooled by modifications of the attack that
they were evaluated against. Conversely, adversarial training
is robust but does not usually offer protection as high as is
initially shown to be possible with detection methods [24] and
adversarial training is more limited in the range of attacks it
can protect against.

Our defensive system, which we name Deep Latent De-
fence, has at its core a feedforward neural network to be
defended. Around this neural network a series of defensive
encoders are placed which take in intermediate layer output
as a test sample passes though the network and projects it
into a lower dimensional latent space. We pre-compute the
training data embeddings in each encoder’s latent space prior
to deployment. By comparing the network’s prediction of the
test sample with the classes of its k-nn training points in each
encoder’s latent space we can gauge how much the training
data is in support of this prediction. Should the network predict
a specific class t and yet the test sample’s embedding is
surrounded by training data points of class c, with c 6= t,
then the input is flagged as suspicious. An overview of the
architecture is shown in Fig. 1.

We thus follow two lines of investigation: firstly, examining
a way of combining adversarial training with our proposed
detection mechanism. It is well known that adversarial training
leads to more robust feature selection [26], and thus should be
able to supply more meaningful information to a uncertainty
based detector making it more secure. Secondly, we investigate
what additional information can be gained from the internal
layers of a neural network rather than just examining the input
and the final prediction.

A. Training Phase

We begin by adversarially training a convolutional neural
network to conduct image classification. We use the projected
gradient descent method (PGD) proposed by [9] to generate
adversarial samples. The PGD method as conducted in [9]
iteratively constructs adversarial examples following equation
2, however the initial starting sample x0 has Gaussian noise
added to it to give different starting locations for the PGD
method. This makes the networks less prone to over-fitting
and more robust.

Fig. 1: Overview of Deep Latent Defence during deployment
illustrating an example case with 3 potential classes in 2D
space for a second layer encoder. The classifier network takes
an input and predicts a particular class. Seeing the classes
of nearby training points in embedding space then we can
measure how much the training data supports the network’s
prediction for the given input. Green plus signs illustrate test
data which was predicted the same class as it’s k-nn training
points and is therefore normal test data. Red crosses illustrate
discrepancies between training data and predicted class of the
sample and so is declared adversarial.

On MNIST this baseline network achieves 98.7% accuracy
on test samples and 91.31% accuracy on adversarial samples
crafted with the PGD method using 40 iterations, a step size
of 0.001, and a maximum perturbation of 0.3. Our baseline
performance for SVHN was 94.76% when trained with a
maximum perturbation of 0.05, a step size of 0.005 and 20
iterations.

To improve on this we turn to our ideas of uncertainty and
internal layer information. For a given layer N its output, ON
is fed into an encoder-decoder model, AN with parameters
θN which returns its decoded representation back into the
classifier neural network F . This encoder-decoder is trained
with the objective of maximum classification accuracy on the
convolutional neural network with cross entropy loss JCE ,

arg min
θN

JCE(F (AN (ON , θN)), y). (5)

where y are the class labels for the data for the data.
Note that F ’s parameters, which have been previously

trained, remain fixed during this second training phase. This
architecture yields a latent space that is much more suited to k-
nn clustering compared to simply reconstructing an input. We
originally experimented with also including a reconstruction
of the original input in the training objective, however it ulti-
mately offered little additional benefit to the overall detection

mechanism as a white box attacker can easily optimise over
it. Thus, to speed up training and test time performance the
reconstruction objective was dropped. This is the principal
motivation from refraining to use the term ‘autoencoder’ to
refer to the encoder-decoder model, as autoencoders usually
incorporate a reconstruction term in the loss function.

To now introduce notions of uncertainty and build a de-
tection system, we use a modified version of Deep k-nn
[25] more explicitly tuned for adversarial sample detection
applied in the latent space created by the encoder-decoder.
One advantage of this is that we can explicitly craft the latent
space for k-nn detection in L2 distance. This differs from [25]
which directly used the intermediate layers in the classification
network for both k-nn classification using hash collisions and
neural network classification. While a normal latent space (or
intermediate layer output) is not inherently suited for a k-
nn using an L2 metric being applied directly, to encourage
well clustered classes in latent space with respect to the L2

distance we augment the training objective with a contrastive
loss function [27].

To use the contrastive loss function we create pairs of
datapoints with each pair containing two data samples of the
same class, or two datapoints belonging to different classes.
They receive a label Y ∈ [0, 1] which flags if both items in
the pair are of the same class. We create equal numbers of
same class pairs (Y = 1) and different class pairs (Y = 0).
To train the defensive encoder on layer N , both data samples
in a pair are passed though the classifier network’s layers 1
through N . At this point the pair is split with one data sample
in the pair going through the encoder and the other through
an auxiliary encoder which provide embeddings X1 and X2

respectively. The auxiliary encoder has the same architecture
as the encoder in this implementation, but is only involved in
the task of minimising the contrastive loss. As the tasks of
the encoder and auxiliary encoder are slightly different, and
to allow greater model flexibility we do not use weight tying
between the two encoders. Additionally we are not interested
in certain benefits which come from weight tying, such as
symmetric prediction when the datapoints are swapped in a
pair, as we do not use D(X1, X2) for detection.

The contrastive loss function, Jc(Y,X1, X2), is therefore
defined as,

Jc(Y,X1, X2) = (1− Y)
1

2
D(X1, X2)2+

Y
1

2
max(0,m−D(X1, X2))

2
(6)

where D(X1, X2) is the L2 distance between the embed-
dings and m is a margin by which we want the classes to be
separated; set to 1 in our experiments. This gives the overall
loss function, JT , to be:

JT = JCE + Jc. (7)

Similarly to our base classification network the auxiliary
encoder and the encoder-decoder pair are adversarially trained.

Fig. 2: Training set up for our defensive system. Here we
show how the encoder for layer 1 is trained. We create pairs
of data which are made up in equal numbers of same and
different classes. A given pair goes through the first layer
of our classifier network. The pair is now split with the first
item in the pair (column 1 in the diagram) going through the
encoder, while the second item (column 2) going through the
auxiliary encoder. Both the auxiliary and normal encoder’s
outputs are then used to compute the contrastive loss. However,
only the encoder’s output is then passed through the decoder
which feeds its output back into the classifier network from
layer 1. To train a defensive encoder for network layer N the
diagram would therefore change to have layers 1 to N on the
left of the encoder, auxiliary encoder, and decoder. The whole
of the network F will be to the right of the decoder.

After training is completed we discard the auxiliary encoder
and the decoder to have a final architecture as shown in Fig.
1. This training procedure is shown for a first layer set-up in
Fig 2.

B. Detection Phase

To detect adversarial samples we first project the training
data into the latent spaces created by our encoders. Then on
a given test point we obtain the network’s predicted class and
the embedding of the test sample in latent space. We compute
the closest 10 k-nn training points in latent space. We then
use the idea of non-conformity introduced in [25], which is
defined as the number of nearby training points with a label
i different to the label j of the test point that is assigned by
the classification network,

βN (x, j) = |i ∈ ΩN : i 6= j|. (8)

where ΩN is the multi set of labels for the k-nn training
points in embedding space created by encoder N . Each
encoder hence generates a non-conformity score βN .

We now perform an additional modification to the work
from [25] in order to more actively take steps to reduce
false positives by pruning the training data included in latent
space. Once training is complete we predict classes for the
training data by passing it through the classification network
with a intermediate layer encoder-decoder placed in layer
N = 1, ...,M . Fig 2 shows the architecture for N = 1
with a first layer encoder-decoder. Training data that has its
label incorrectly predicted is not included in the N th layer

TABLE I: Defence performance of our algorithm. Base Accuracy corresponds to an adversarially trained neural network as
described in Section IV-A. The difference between the Base Accuracy and Robustness corresponds to the contribution of the

detector.

Dataset Attack Attack Parameters Base Accuracy Robustness ROC AUC

MNIST

FGSM ε = 0.3 95.64% 98.40% 0.994
PGD ε = 0.3, α = 0.01, i = 100 91.20% 97.56% 0.99
CW i = 2000 11.73% 96.10% 0.99

Adaptive ε = 0.3 92.65% 95.62% 0.982

SVHN

FGSM ε = 0.05 65.56% 94.59% 0.971
PGD ε = 0.05, α = 0.005, i = 100 22.59% 79.69% 0.906
CW i = 1000 3.24% 99.41% 0.993

Adaptive ε = 0.05 28.89% 51.32% 0.811

encoder’s latent space. This filtering has a beneficial effect
on both true and false positive rates. We further experimented
with including adversarial samples that have been correctly
classified by the network, however it resulted in a detrimental
effect to performance.

During test time, data seen by the network will therefore be
assigned a non-conformity value. A threshold for acceptable
levels of non-conformity is needed for us to declare a sample
as adversarial or normal. To determine this non-conformity
threshold we split our test data. A calibration set of size
750 is removed and not evaluated on, and it is used to
compute a non-conformity threshold for each encoder. The
non-conformity value is used as a measure of how credible a
test sample’s predicted class is. A highly unusual sample will
have a large non-conformity value and should it be greater
then our threshold it is flagged as adversarial.

V. EXPERIMENTAL RESULTS

We present our experimental results which have been tested
on MNIST and SVHN. For our classifier networks we used
a 4 layer convolution network for MNIST and an 8 layer
convolution network for SVHN. We used three encoders on
the first three layers of our MNIST classifier and used two
on the first two layers in the SVHN case. The aggregate non-
conformity score resulting from the encoders is taken and if it
exceeds a given threshold a test point is declared anomalous.
We tried different configurations of the encoders and found
this to give us the best results, as encoders placed deeper into
the network have a diminishing effect because the deeper a
adversarial sample travels, then the more like the target class
it will resemble.

In determining the latent space size we ran a grid search
and, as expected, found that the larger the latent space the
fewer false positives occur although less adversarial samples
are detected. This matches general intuition as a larger latent
space will retain more information from the source, preserving
both class information and adversarial perturbation. In our
experiments we used a latent dimension of size 10 for MNIST
and 100 for SVHN.

For our results we say the system is robust against an
adversarial sample if:

1) The attack is successfully classified.

2) The attack is not successfully classified, but is detected
by our detection system.

This metric of either successful classification or successful
detection is referred to as robustness. In the case where an
adversarial sample is misclassified by the network and yet is
detected then we say our detection system gave a true positive
result.

A false positive is defined as a test set sample with no
malicious perturbations added and yet is flagged as adversarial.
We consider that the false positive rate should be measured
on normal test time data encountered by the network during
regular deployment. Therefore, we do not regard an adversarial
sample which has been correctly classified, and flagged by our
detection system to be a false positive. We would argue that
an end user, particularly in security sensitive domains, would
always want to be alerted to an adversarial attack, even if it
is correctly classified by the network.

A. Grey Box Attacker

A grey box attacker represents an attacker who knows
the target model’s architecture and parameters, but otherwise
unaware of defensive mechanisms in place. We run different
L∞ bounded attacks as commonly seen in literature as well
as the Carlini Wagner (CW) L2 [20] attack on our network.
As the CW attack uses a different norm, it circumvents the
adversarial training employed. However, such attacks were
highly visible in the latent space for our experiments. For
the PGD method we report the worse-case performance of
our defensive system using 5 random restarts. The results
for the grey box attacks are shown in Table I. In addition
to the robustness metrics conditioned on a specific detection
threshold we show the receiver operating characteristic (ROC)
area under curve (AUC) scores as a metric for our true
positive (TP) and false positive (FP) rates at varying detection
thresholds.

We can see from Table I that the balance between the latent
space detection system and the underlying neural network
accuracy in contributing to the overall robustness shifts as the
attack becomes more powerful or changes from a L∞ to a
L2 norm. On one extreme, for the MNIST dataset, the FGSM
is almost entirely accounted for by the adversarially trained
neural network, which is expected as it was trained against
a PGD attack. Thus, the detector only improved on this by

2.76%. However, the adversarial training provided little help
against the CW attack and the detection system provided most
benefit there. For example, in the SVHN case 96.17% of the
robustness was due to the detection system.

The current threshold used to generate the results gave a
FP rate of 1.96% on test set data for MINST and 10.02% for
SVHN. However, it is worth highlighting the split between
false positives that occur on test set samples that are correctly
classified and those which are classified incorrectly. For the
current thresholds the number of false positives that occurred
on incorrect samples was 0.98% for MNIST. In other words,
half of our false positives in the MNIST case came from
data that would have been incorrectly classified. Similarly,
for SVHN 3.98% of the false positives were on incorrectly
classified data. Considering a false positive to be only test
samples that the neural network classified correctly, then the
FP rate is 0.98% and 6.04% for MNIST and SVHN.

We can also examine the TP and FP rates for detectors
placed at different depths in the neural network over the
baseline accuracy as shown in Table II for the CW attack.
The results show that if we are including defensive encoders in
earlier layers the extra benefit of including additional encoders
decreases as fewer adversarial samples are detected. Taken
to the extreme with very deep encoders their capability to
distinguish adversarial samples is low as by that point if the
adversarial sample is misclassifed it will be embedded to the
point of indistinguishability.

B. White Box Attacker

We now turn our attention to a stronger attacker model
representing a white box attacker who knows the defensive
system in place and hence can mount mount an adaptive attack.
Here we restrict our attacker to be constrained to a L∞ norm
of 0.3 and 0.05 for MNIST and SVHN respectively.

Such an attacker can consider our detection system as a
large ensemble of models i = 0, ..., k and aim to optimise over
all of them. Each model is a classifier with encoder-decoders
placed in different positions, effectively resembling Fig. 2 in
the case of i = 1 but with the auxiliary encoder removed. In
the case of i = 0 then we just have the regular classification
network without any encoder-decoders. We combine the model
predictions Pi,

Pens =

k∑
i=0

Pi(x
∗, θi, y) (9)

TABLE II: Cumulative true and false positive rates for differ-
ent layer depth over the base network accuracy.

Dataset Layer Cumulative TP increase
over baseline Cumulative FP

MNIST
1 76.40% 1.28%
2 82.12% 1.58%
3 84.37% 1.96%

SVHN 1 94.06 % 6.74%
2 96.17 % 10.02%

Fig. 3: Level of protection offered at different values of α2

for MNIST. Over our search a value of 15 gave the strongest
attack on both MNIST and SVHN.

and seek to find inputs, x∗ which fools the overall ensemble
prediction Pens. Naively optimising over all the models still
leaves the attacker vulnerable to detection. For example,
running a PGD attack results in a detection performance of
96.54% on MNSIT.

The attacker can modify their strategy to specifically counter
our proposed defence. A k-nn classifier has the obstacle
for an attacker that it does not provide gradients to utilise
for adversarial sample crafting. Thus, in this attack that we
construct the attacker proxies the k-nn by not only optimising
for misclassification on the network output, but also optimises
to push the adversarial embedding as close as possible to the
centroid of the target class in embedding space.

To do this we run a PGD attack as it was the best performing
L∞ bounded attack. Attack samples which fail at being
misclassifed, let alone also being stealthy, are left as they
are and do not have further computations performed on them.
Successful attacks then have the centroid in latent space of the
training data, X , for the class they are being misclassifed to,
yt, computed.

We then optimise:

xt+1 = xt + α1∇JCE(x∗, y, θ)

−α2

k∑
i=1

∇Jcnt(x∗, yt, X, θi)
(10)

where Jcnt is the loss due to the L2 distance in latent space
of the target class’s centroid to the adversarial sample on a
specific encoder i. The parameters α1−2 weigh the two losses.
This type of attack is only feasible under a attacker model
that in addition to the target knowledge also has access to
a dataset that approximates the training data distribution. In
the strongest case, such as we have considered, the attacker
has the entirety of the training set. Additionally, success of
the attacker under the formulation described depends on how
strongly the attacker chooses to optimise for the Jcnt loss
compared to the objective of successful misclassification. We
thus ran a hyper-parameter search over α2 while keeping α1

to 0.01 and the results are shown in Figure 3 for MNIST.
As we can see, there is a inherent trade off between

making the attacks stealthy and yet still achieve the original

objective of fooling the classifier. Even under this stronger
attack objective our defence is able to detect a high proportion
of attacks as shown in Tables I.

VI. CONCLUSION

This paper presents Deep Latent Defence, an approach
to investigate new ways of defending against adversarial
examples. The contribution of this work is to examine how
adversarial training can be enhanced in a robust manner with
a detection system relying on model confidence. Even under an
adaptive L∞ bounded attacker specifically designed to counter
our defence we achieved ROC AUC scores of 0.982 and 0.811
for MNIST and SVHN. Under a specific detection threshold
this corresponds to a robustness of 95.62% with a 1.97% FP
rate for MNIST. Equivalent results for SVHN are a robustness
of 51.32% and FP rate of 10.02%. A substantial number of
false positives occur on data that the neural network would
have classified incorrectly. Hence, the degradation to the neural
network classification performance on normal data is smaller
than the raw FP rate, corresponding to 0.98% and 6.04% for
MNIST and SVHN.

ACKNOWLEDGMENT

We would like to thank NVIDIA for their generous donation
of a GPU in support of this work.

REFERENCES

[1] Mennatullah Siam, Sara Elkerdawy, Martin Jagersand, and Senthil Yo-
gamani. Deep semantic segmentation for automated driving: Taxonomy,
roadmap and challenges. In Intelligent Transportation Systems (ITSC),
2017 IEEE 20th International Conference on, pages 1–8. IEEE, 2017.

[2] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez.
A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

[3] C. Feng, T. Li, and D. Chana. Multi-level anomaly detection in industrial
control systems via package signatures and lstm networks. In 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 261–272, June 2017.

[4] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[5] Nicholas Carlini and David Wagner. Audio adversarial examples:
Targeted attacks on speech-to-text. arXiv preprint arXiv:1801.01944,
2018.

[6] C. Feng, T. Li, Z. Zhu, and D. Chana. A Deep Learning-based Frame-
work for Conducting Stealthy Attacks in Industrial Control Systems.
ArXiv e-prints, September 2017.

[7] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes,
and Patrick McDaniel. Adversarial perturbations against deep neural
networks for malware classification. arXiv preprint arXiv:1606.04435,
2016.

[8] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284, 2017.

[9] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[10] Ambrish Rawat, Martin Wistuba, and Maria-Irina Nicolae. Adversarial
phenomenon in the eyes of bayesian deep learning. arXiv preprint
arXiv:1711.08244, 2017.

[11] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: De-
tecting adversarial examples in deep neural networks. arXiv preprint
arXiv:1704.01155, 2017.

[12] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev. Ai2: Safety and robustness certification of neural networks
with abstract interpretation. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 3–18, May 2018.

[13] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against
adversarial examples. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 135–147.
ACM, 2017.

[14] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman,
Siwei Li, Li Chen, Michael E Kounavis, and Duen Horng Chau. Shield:
Fast, practical defense and vaccination for deep learning using jpeg
compression. arXiv preprint arXiv:1802.06816, 2018.

[15] Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and
George E Dahl. Motivating the rules of the game for adversarial example
research. arXiv preprint arXiv:1807.06732, 2018.

[16] Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander
Madry. A rotation and a translation suffice: Fooling cnns with simple
transformations. arXiv preprint arXiv:1712.02779, 2017.

[17] Tom B Brown, Dandelion Mané, Aurko Roy, Martı́n Abadi, and Justin
Gilmer. Adversarial patch. arXiv preprint arXiv:1712.09665, 2017.

[18] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, and Mani
Srivastava. Genattack: Practical black-box attacks with gradient-free
optimization. arXiv preprint arXiv:1805.11090, 2018.

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[20] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 39–57. IEEE, 2017.

[21] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning. In international
conference on machine learning, pages 1050–1059, 2016.

[22] Lewis Smith and Yarin Gal. Understanding measures of uncertainty for
adversarial example detection. arXiv preprint arXiv:1803.08533, 2018.

[23] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B
Gardner. Detecting adversarial samples from artifacts. arXiv preprint
arXiv:1703.00410, 2017.

[24] Nicholas Carlini and David Wagner. Adversarial examples are not
easily detected: Bypassing ten detection methods. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, pages
3–14. ACM, 2017.

[25] Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors:
Towards confident, interpretable and robust deep learning. arXiv preprint
arXiv:1803.04765, 2018.

[26] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner,
and Aleksander Madry. There is no free lunch in adversarial robustness
(but there are unexpected benefits). arXiv preprint arXiv:1805.12152,
2018.

[27] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742. IEEE, 2006.

	I Introduction
	II Background
	II-A Neural Networks
	II-B Adversarial Examples
	II-C Attacker Knowledge
	II-D Perturbation Levels
	II-E Crafting Algorithms
	II-E1 One Step Methods
	II-E2 Iterative Methods
	II-E3 Optimization Methods

	III Defences
	III-A Adversarial Training
	III-B Detection by Uncertainty

	IV Deep Latent Defence
	IV-A Training Phase
	IV-B Detection Phase

	V Experimental Results
	V-A Grey Box Attacker
	V-B White Box Attacker

	VI Conclusion
	References

