The Richer Representation Fallacy: Are We Just Adding
Noise to LLM-based Software Vulnerability Detectors?

Hazim Hanif ", Sergio Maffeis*, Nor Badrul Anuar#

“Department of Software Engineering, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia.
#Centre of Research for Cyber Security and Network (CSNET), Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur,
Malaysia.

*Department of Computing, Imperial College London, London, United Kingdom.

Emails: “hazimhanif@um.edu.my, *sergio.maffeis@imperial.ac.uk, *badrul@um.edu.my

Abstract—Large Language Models (LLMs) have established
strong baselines for software vulnerability detection, leading to
a common assumption that their performance can be enhanced
by augmenting them with supplementary information such as
Abstract Syntax Trees (ASTs), software metrics, or expanded
pre-training data. However, the actual efficacy of these
computationally expensive techniques over a robust LLM
baseline remains unevaluated, potentially misdirecting research
efforts. This paper aims to empirically test this "'more is better"
assumption by conducting a large-scale study that evaluates
four supplementary techniques: multi-task learning, software
metrics injection, data expansion, and hybrid graph
representations against a high-performing LLM baseline,
VulBERTa, on the CodeXGLUE benchmark for C/C++ code.
Our findings demonstrate that none of these complex techniques
provides a statistically significant performance improvement, as
the baseline model's tokenization and attention mechanisms
already capture the necessary information, rendering the
additions redundant. However, we identify software metrics
injection as an effective method for tuning the precision-recall
trade-off, a critical capability for practitioners needing to
minimize false negatives. This paper concludes that for LLM-
based vulnerability detection, adding external complexity offers
diminishing returns, and future efforts should focus on core
model improvements, supporting a "less is more" approach.

Keywords — vulnerability detection, software security,
representation learning, large language models, deep learning

I. INTRODUCTION

The introduction of Large Language Models (LLMs) has
led to significant developments in code intelligence, showing
strong performance in a range of software engineering tasks,
from automated program synthesis to bug detection [1]. In the
critical area of software security, specialized LLMs have
shown success in identifying vulnerabilities from source code.
Models such as VulBERTa [2], pre-trained on large datasets
of C/C++ functions, have established strong baselines and
achieved success by learning complex patterns from
sequences of code tokens, outperforming DL approaches on
benchmarks like CodeXGLUE [3] and D2A [4].

This success leads to a common hypothesis in the research
community: if these models perform well on token sequences,
their capabilities have the potential to be further enhanced by
adding more explicit structural and semantic information to
their input. This "more is better" assumption [20] is motivated
by known limitations in LLMs, such as challenges in deep
contextual understanding and a tendency to produce incorrect
information, which indicates that providing more structured
knowledge results in more reliable models [1]. As a result,
several research directions have been explored to improve
these baseline models.

This work was supported by Universiti Malaya Research Programme under
grant UMGO010D-2025.

e Multi-Task Learning (MTL): Trains a model on the
main vulnerability detection task and a related
secondary task (e.g., predicting code complexity)
simultaneously. This encourages the model to learn
more generalized and robust features [5].

e Domain-Specific Feature Injection: Directly feeds
expert-crafted software metrics (e.g., lines of code or
complexity scores) into the model to guide its
decisions using established indicators of potential
defects [6].

e Data and Model Scaling: Increases the amount of pre-
training data and the model's size, based on the
principle that a larger, more broadly trained model
yields better performance on downstream tasks [2].

e Hybrid Code Representations: Combines code tokens
with structural information, such as Abstract Syntax
Trees (ASTs), to provide a deeper semantic context
than sequential data alone can offer [7].

While these techniques are well-reasoned on their own and
represent active areas of research, a crucial question remains
unanswered: Do they deliver a genuine, significant
performance improvement when applied to a pre-trained LLM
baseline for vulnerability detection? The assumption of their
utility is widespread, yet it remains to be systematically
compared and validated. It is unclear whether these methods
offer a true enhancement or merely introduce computational
complexity for little or few benefits.

This paper presents a large-scale empirical study designed
to evaluate the "more is better" assumption. We systematically
assess the efficacy of the four supplementary techniques
against a strong baseline LLM, VulBERTa, on the task of
function-level vulnerability detection in C/C++ code. The
techniques are multi-task learning, software metrics injection,
pre-training data expansion and hybrid code representations.
Contrary to common assumptions, evaluation results show
that these complex supplementary techniques provide few
significant performance improvements. Our results indicate
that a well-designed baseline LLM, with an advanced
tokenization pipeline and a powerful attention mechanism,
already captures the necessary signals from raw code
sequences, rendering these elaborate additions mostly
redundant or, in some cases, even harmful to performance.

In summary, our main contributions are:

e A large-scale comparative study to systematically
evaluate four distinct and popular classes of
supplementary techniques (multi-task learning,
software metrics injection, pre-training data
expansion, and hybrid graph representations) against
a unified, high-performing LLM baseline.

e QOur primary findings indicate that there is strong
empirical evidence that these complex techniques
failed to outperform a simpler baseline in a
meaningful way. The findings encourage future
research efforts to focus more on improving core
LLM components, such as pre-training objectives and
tokenization strategies, rather than adding external
complexity for minor improvements.

e Supplementary techniques, while less effective in
improving overall accuracy, are still useful for
adjusting a model's predictions. For instance, the
evaluation showed that software metrics injection is a
useful technique for increasing recall at the cost of
precision, a practical finding for practitioners who
need to minimize false negatives.

II. RELATED WORKS

A. The Rise of LLMs for Code Intelligence

The application of deep learning to source code analysis
has undergone significant evolution. Early approaches
leveraged architectures like LSTMs and CNNs on token
sequences, while others explored graph neural networks on
program structures like ASTs [2]. The introduction of the
Transformer architecture, however, marked a new phase [8].
Transformer-based LLMs such as CodeBERT [9], CoTexT
[10], and CodeT5 [11] have established themselves as the state
of the art, achieving strong performance on comprehensive
benchmarks like CodeXGLUE [3] for a wide range of tasks,
including code completion, translation, and defect detection.

B. Recent Advances and Challenges in LLM-based
Vulnerability Detection

In recent years, we have seen a surge in research applying
LLMs to C/C++ wvulnerability detection, moving beyond
initial proofs-of-concept to more rigorous real-world
evaluations [11]. However, this body of work has also
highlighted significant challenges, particularly the
discrepancy between model performance on curated
benchmarks versus more realistic scenarios. A key theme is
the critical impact of dataset quality. For instance, Primevul
dataset [12] was introduced to address data quality issues in
earlier benchmarks. On this more challenging dataset, a state-
of-the-art 7B parameter model achieved an F1-score of only
3.09%, a stark contrast to the 68.26% F1-score it achieved on
the widely used BigVul dataset [13].

Other recent evaluations corroborate this trend. The
SecVulEval [14] benchmark, introduced in 2025 for fine-
grained, statement-level detection, found that the best-
performing model, Claude-3.7-Sonnet, only reached a 23.83%
Fl1-score. A comprehensive study of 14 SOTA LLMs on the
SVEN C/C++ dataset reported a balanced accuracy of just
54.5%, with researchers concluding that current LLMs
perform poorly at this task [15]. While many recent LLM-
based approaches show modest results, other deep learning
techniques continue to be explored. In response to these
challenges, recent research has focused on providing LLMs
with richer context. A significant trend is the shift towards
interprocedural and repository-level analysis, with new
benchmarks such as ReposVul [19] and VulEval [16] being
developed in 2024 to incorporate caller-callee relationships.
Another promising direction is the integration of LLMs with
traditional static analysis tools.

C. State-of-the-art in Supplementary Techniques

The four techniques evaluated in this paper are specifically
chosen as they represent primary, active research directions
for enhancing code intelligence models.

e Multi-Task Learning (MTL): Improves model
generalization by learning shared representations
across tasks. In code, it predicts properties of code
snippets jointly through different classification tasks.
For example, some studies used MTL to predict token
for code completion, showing better performance
than single-task models [5].

e Software Metrics in ML-based Security: Traditional
metrics like cyclomatic complexity, lines of code, and
coupling measures were used before deep learning as
features for vulnerability prediction models. These
metrics quantify code complexity, often correlating
with defects, and have been successfully used with
various machine learning algorithms to identify
vulnerable code units.

e Scaling Laws and Data Expansion: The principle of
"scaling laws" suggests model performance improves
predictably with increased size, dataset, and compute
[1]. Empirical evidence from successive models
supports this. Chinchilla [17] demonstrated that for
optimal training, model size and training tokens
should be scaled equally, revealing that many large
models were undertrained.

e Hybrid Code Representations: Hybrid models
combine token sequences, which show linear code
flow, with graph representations like ASTs and CFGs
that explicitly show hierarchical and control-flow
structures. Recent research highlights the advantages
of hybrid graphs in tasks like code clone detection [7].

While the literature contains numerous proposals for
models that utilize one of these supplementary techniques, a
significant gap remains in the research. There is a lack of
rigorous, comparative analysis that evaluates the additional
benefit of these techniques when added to a single, unified,
and already high-performing LLM baseline. Prior work has
focused on demonstrating the viability of a new complex
model, asking, "Can we build a model with technique X?"
This paper addresses a more critical and practical question for
the field: "Given a state-of-the-art LLM, should we add the
complexity of technique X?" By providing a direct, empirical
answer, this work aims to help direct future research.

III. METHODOLOGY

In this section, we introduce the framework for our large-
scale empirical evaluation of the supplementary techniques.
The framework consists of four main supplementary
techniques: a) Multi-task learning, b) Software metrics
injection, c) Pre-training data expansion, and d) Hybrid code
representation, which we implement as modifications to the
baseline model, allowing for a direct comparison of their
impact on the baseline model. We describe the baseline model
and these supplementary techniques in detail in subsequent
subsections.

A. The Baseline LLM: VulBERTa-CNN

The baseline LLM selected for this paper is VulBERTa-
CNN, due to its effectiveness despite its small size. It
efficiently freezes the pre-trained embedding layer and uses

it to initialize a Text-CNN architecture. This reduces the
number of trainable parameters to approximately 2 million,
significantly accelerating training while keeping the
knowledge from pre-training in the embeddings.

A critical component of its success is its advanced
tokenization pipeline. This pipeline is a language-specific
pre-processing stage designed to retain as much information
as possible from the raw source code. This tokenization
strategy ensures that key syntactic and semantic elements are
never broken down into subwords, providing the
Transformer's attention mechanism with a stable and
informative sequence. The strong performance of these
baseline models on the CodeXGLUE benchmark sets a high
standard for any supplementary technique to be considered
beneficial.

B. Technique 1: Multi-Task Learning (MTL)

This technique aims to improve model generalization by
training it on multiple related tasks simultaneously. We
modify the VulBERTa-CNN architecture to incorporate a
second classification head, allowing it to learn two tasks
simultaneously. The primary task remains vulnerability
detection. For the secondary task, we implement five task
variations to provide different types of contextual information:

e Frequency of standard API calls: The syntactic
occurrence of standard C/C++ API or library calls in
a function.

e Frequency of security-related API calls: The
syntactic occurrence of security-related C/C++ API or
library calls in a function.

e Frequency of memory-related API calls: The
syntactic occurrence of memory-related C/C++ API
or library calls in a function.

e Frequency of all API calls: The syntactic occurrence
of all C/C++ API or library calls in a function.

e Cyclomatic complexity level: The level of
complexity of a function by measuring the number of
linearly independent paths in a function.

The idea is that by learning a related secondary task, the
model develops a richer, more generalized internal
representation. During training, the losses from both tasks
were averaged and backpropagated through the shared
network layers, forcing the model to find a balance in learning
features useful for both objectives. Fig. 2 illustrates the MTL
architecture by altering the VulBERTa-CNN model.

API frequency / Complexity level

o
~ i
- ;XC 2 ! !
| B -‘ < Layer —> Layer |----
2 X ‘

(1]
VUIBERTa-CNN model

Tokenisation pipeline

* int void
main ()

{char dest —y.
150] Task Separation ---- | Average

return(o); *

*HE=

Vulnerability detection task

Fig. 1. Software metrics injection architecture with VulBERTa-CNN model.

C. Technique 2: Software Metrics Injection

This technique involves supplementing the model with
external, expert-defined features that have traditionally been
used to indicate code quality and complexity. We modify the
baseline VuIBERTa-CNN architecture to include a separate
input path for these numerical metrics. Three distinct sets of
metrics were extracted for each function:

e Standard software metrics: Statistical measures
extracted from the raw C/C++ code using the static
analysis tool, Scitools Understand (e.g., CountStmt,
AvgCyclomatic, CountLine).

e AST-based metrics: Statistical measures extracted
based on the elements of Abstract Syntax Trees of a
function using Clang (e.g., NumASTNode, DepthAST,
NumTokens).

e Flawfinder metrics: Statistical measures extracted
from a full report produced by a Flawfinder run for
each function (e.g., NumFlagged, L5count, buffer)

Fig. 1 illustrates the software metrics injection architecture
in conjunction with the baseline model. The supplementary
mechanism operates by injecting these numerical features into
the network immediately before the final classification layers,
where they are concatenated with the learned representation
from the CNN. This approach evaluates whether providing
explicit, quantitative measures of code complexity is able to
aid the LLM's decision-making process effectively.

D. Technique 3: Pre-training Data Expansion

This technique evaluates the "scaling laws" hypothesis,
which hypothesizes that model performance scales with the
amount of data. To achieve this, we developed
VulDeBERTa, a new [25-million-parameter model, by
implementing two significant modifications to the baseline.
First, we replace the underlying RoBERTa architecture with
the more advanced DeBERTa v2 [21], which enhances
performance through novel techniques such as a disentangled
attention mechanism and an improved mask encoder. Second,
we expand the pre-training dataset by over 4.5 times, moving
from 2.2 million functions to a 10-million-function subset of
the GitHub-L dataset.

We also increase the vocabulary with over 800 new
memory and security-related API call tokens to capture more
domain-specific knowledge. Finally, we fine-tune
VulDeBERTa using the same lightweight CNN head as the
baseline, which allows for a direct comparison to measure the
impact of the modern architecture and increased data. Table
I summarizes the main component differences between
VulBERTa and the newly developed VulDeBERTa model.

Software
metrics

" § L;

Fully-connected
layers

Injected neurons

Non-vul or
vulnerable clas
prediction

@)

" int void

main ()

{char dest | -
[50] (1]

r-(u;;ia): "

b b

CLE G

VulBERTa-CNN model

<ls>

Tokenisation pipeline

Fig. 2. Multi-task learning architecture with VulBERTa-CNN model

TABLE I.
Main component difference between VulBERTa and VulDeBERTa model

Components VulBERTa VulDeBERTa (this paper)

Architecture RoBERTa-base DeBERTa v2-base

Pre-training data 2.2 million C/C++ 10 million C/C++ functions
functions

Special tokens Standard API calls Standard, memory-related,
security-related API calls
Number of special 444 1250

tokens
Pre-training time

5 days 25 days

E. Technique 4: Hybrid Code Representation

This technique provides the model with a richer
understanding of code by combining multiple representations.
We design a new architecture, VulCAS, to process three
parallel input streams for each function. Fig. 3 visualizes the
VulCAS architecture.

The first stream feeds the standard sequence of code
tokens into the baseline VulBERTa-CNN to capture
sequential patterns. The other two streams process the
function's Abstract Syntax Tree (AST) and Control Flow
Graph (CFG) using separate Graph Attention Networks
(GATV2), a state-of-the-art architecture for learning from
graph data. The AST provides hierarchical syntactic structure,
while the CFG outlines the execution flow.

Towards the end, the architecture concatenates the outputs
from all three streams: the token-based CNN and the two
graph-based GATs, and passes the combined result to a set of
fully-connected layers for classification. This hybrid approach
evaluates whether explicitly providing structural and control-
flow information improves upon what the model learns
implicitly from tokens alone.

F. Datasets

This subsection describes the datasets used in this paper.
They consist of function-level C/C++ source code from
various codebases, mainly from open-source repositories. All
datasets mentioned below are in the public domain and
available for download without restriction. They consist of
function-level C/C++ source code from various codebases,
mainly from open-source repositories. All datasets mentioned
below are in the public domain and available for download
without restriction.

1) Devign (CodeXGLUE benchmark): The Devign
dataset is a real-world software vulnerability detection dataset
with function-level C/C++ source code from QEMU and
FFmpeg. It is a binary detection dataset labeled as non-
vulnerable or vulnerable, manually verified by security
researchers in two rounds. Chosen for its widespread use and
as a benchmark in the Microsft CodeXGLUE leaderboard.

2) GitHub-L (BigQuery): The GitHub-L dataset is an
extensive collection of function-level C/C++ source code
from various open-source software projects on GitHub. It
consists of 18 million real-world functions extracted using
Google BigQuery. Since this dataset aims to collect a large
number of functions, we avoid using the GitHub API due to
the rate-limit restrictions. From there, we sample 10 million
function-level C/C++ source code for the pre-training of the
VulCAS model.

Joern

VuIBERTa

!—’@—v—\ e |
* int void AT cre (asT) (asT)
main () =
{char dest)
[50] ... Tokenisation VUIBERTa Graph Attention
Y : @

Graph Attention

mlum(o) ‘—F embeddings —>

pipeline (CFG) (CFG)
_Codtsaq—T Frozen VUIBERTa

VUIBERTa-CNN
embeddings —»
(CodeSeq) (CodeSeq) Fully-connected

layers

Non-vul or
vulnerable class
prodiction

Fig. 3. The VulCAS architecture

IV. EXPERIMENTAL EVALUATION

In this section, we describe how we evaluate the proposed
supplementary techniques against the baseline LLM.

A. Experimental Setup

1) Hardware and software: We use PyTorch 1.10 with
CUDA 11.3 on top of Python 3.9 for all experiments. For pre-
training VulDeBERTa, we use the High-Performance
Computing (HPC) cluster from the university with 32 cores
Intel Xeon CPU, 192GB RAM, and 8 NVIDIA RTX 6000
GPUs, each with 24GB of video memory. On top of that, we
also use Weights & Biases as our training management
platform to track training sessions throughout the work.

2) Performance criteria: The primary evaluation metric
is Accuracy, as it is the standard for the CodeXGLUE
benchmark. However, to provide a more complete picture of
performance, we also report Precision, Recall, and F1-score.
The Fl-score is particularly important as it provides a
balanced measure of a model's performance on imbalanced
classification tasks like this one.

3) Dataset: All comparative fine-tuning experiments
were conducted solely on the Devign dataset. As a key part of
the Microsoft CodeXGLUE benchmark, Devign is a well-
known and challenging dataset for real-world vulnerability
detection, ensuring that our results are both reproducible and
directly comparable to other published work.

B. Results

Table II summarises the experimental results on the
Devign dataset for the vulnerability detection task. We
highlight the highest score for each evaluation metric.
Additionally, we also analyze the results using various
supplementary techniques and discuss them accordingly.

1) Multi-task learning: None of the multi-task learning
approaches improved the baseline model's accuracy. The best
was using cyclomatic complexity as a secondary task, with
64.16% accuracy, the highest true positives (488), and lowest
false negatives (767). It also had a recall of 61.11%, about
10% above the baseline, and the highest F1 score of 61.04%.
Including complexity as a second task improved positive
sample detection. The memory API calls task had the most
false positives and true negatives, with the highest precision
0f 66.95%, but overall accuracy was only 62.62%.

2) Software metrics injection: The results showed that by
injecting standard software metrics, we achieved 64.24%
accuracy and 65.11% precision, the highest among different
approaches for software metrics injection. Conversely, the
injection of AST metrics achieved higher recall at 50.52%,
compared to standard software metrics. Flawfinder metrics

TABLE II
Evaluation results for all supplementary techniques on the CodeX GLUE benchmark.

Supplementary technique Approach FN FP TN TP Accuracy (%) Precision (%) Recall (%) F1
(%)
Baseline VulBERTa-CNN 615 357 1120 640 64.42 64.19 51.00 56.84
Multi-task learning Frequency of standard API calls 580 409 1068 675 63.80 62.26 53.78 57.72
Frequency of security API calls 533 503 974 722 62.07 58.93 57.52 58.22
Frequency of memory API calls 793 228 1249 462 62.62 66.95 36.81 47.50
Frequency of all API calls 581 452 1025 674 62.19 59.86 53.70 56.61
Level of cyclomatic complexity 488 491 986 767 64.16 60.97 61.11 61.04
Software metrics injection Standard software metrics 656 321 1156 599 64.24 65.11 47.73 55.08
AST metrics 621 381 1096 634 63.32 62.46 50.52 55.88
Flawfinder metrics 519 505 972 736 62.52 59.31 58.65 58.97
Pre-training data expansion VulDeBERTa 649 319 1158 606 64.57 65.51 48.29 55.60
Hybrid code representation VulCAS 570 398 1079 685 64.57 63.25 54.58 58.60

also drag VulBERTa-CNN down and reduce its detection
performance by 1.9%. The results indicated that all software
metrics injection approaches are still unable to improve the
detection performance beyond the baseline.

3) Pre-training data expansion: VulDeBERTa achieved
64.57% accuracy, slightly better than VulBERTa-CNN by
0.15%. It achieves better precision due to higher true
negatives, but at the expense of lower recall and F1 scores
compared to baselines, indicating a more -effective
classification of non-vulnerable samples than vulnerable
ones.

4) Hybrid code representation: The results showed that
VulCAS achieved the same accuracy as VulDeBERTa,
which is also higher than the VulBERTa-CNN baseline.
However, it has a lower precision of 63.35% than the
baselines. We achieved higher true positives using the hybrid
representation architecture, resulting in higher recall and F1
scores compared to both baseline models. This shows that it
predicts vulnerable samples more accurately than baseline
models.

C. Discussion

We divide our discussion into four research questions
based on the supplementary techniques proposed in this paper.

1) RQI1: Do multiple tasks share different information
learned between them, and do they compete with each other?

Multi-task learning (MTL) aims for tasks to share
information to improve performance, but it only works if
tasks don't compete during training. Our Devign dataset
evaluation shows that MTL was harmful, reducing primary
vulnerability detection. The secondary task maintained high
accuracy over 90%, but at the expense of the primary task,
indicating one-sided learning. Adding a third task worsened
performance, suggesting the model was reaching capacity.
Simple tasks dominate and harm others. Even with weighting
to prioritize vulnerability detection, no improvement was
seen. Overall, different learning tasks shared information
among each other but ended up competing, causing negative
results

2) RQ2: Does injection of sofiware metrics provides
relevant information to the detection model?

We hypothesize that adding external software metrics would
improve VulBERTa-CNN's detection accuracy. However,
the results show that it is less likely and sometimes worsens
performance compared to the baseline. This indicates that the
model doesn't benefit from such data, which is common for
neural networks with tabular inputs, unlike traditional models
like SVM or Random Forest. These metrics also performed
poorly alone, with less than 55% accuracy. However, by
combining standard and Flawfinder metrics, we were able to
increase true positives and achieve better recall and F1 scores
than the baseline. While metrics injection does not improve
overall accuracy, it serves as a valuable control knob.
Practitioners can use it to deliberately shift a model's behavior
towards higher recall, a critical function in security settings
where the cost of a missed vulnerability (a false negative) far
outweighs that of a false alarm.

3) RQ3: Does increasing pre-training data help in a
vulnerability detection task?

Based on prior work showing larger datasets benefit Large
Language Models (LLMs), we increased pre-training data by
over 450% (from 2.2 to 10 million C/C++ functions) and
added new API call tokens. We hypothesize this would help
the model learn a more general code representation and
improve vulnerability detection. Despite the effort, the results
were underwhelming. This data increase only improved
accuracy by 0.15% over the VulBERTa-CNN baseline. The
abundance of general C/C++ functions is unable to introduce
better generalization, likely because vulnerability detection
needs project-specific code, as vulnerabilities have complex,
hidden patterns best captured within a single project's style.
Different vulnerability types also hinder detection, making a
general approach less effective. We conclude that increasing
general pre-training data does little to improve the baseline
models for this task.

4) RQ4: Does hybrid code representation introduce
additional semantic and contextual knowledge to the model?

We combine code tokens, ASTs, and CFGs into a hybrid
architecture to learn richer syntactic and semantic
information from C/C++ source code. The ASTs and CFGs
should provide additional contextual knowledge to improve
vulnerability detection. However, the hybrid model,

VulCAS, performed similarly to VulDeBERTa, with 64.57%
accuracy. This is slightly higher than VulBERTa-CNN,
suggesting that ASTs and CFGs provide only a marginal
enhancement to code representation. This likely stems from a
foundational representational mismatch. The VulBERTa
embeddings are highly optimized to capture semantic
patterns from sequential code tokens. In contrast, the GATs
learn structural patterns from graph nodes, and in our setup,
they were trained from scratch only on the downstream task
data. Without a joint pre-training phase to harmonize these
disparate modalities, the model struggles to effectively fuse
them. The powerful, pre-trained signals from the token-based
CNN likely overshadow the weaker signals from the graph
networks, rendering their structural information redundant.

D. Limitations

Our work faced two main limitations: resource constraints
restricted us to models with fewer than 500 million
parameters on a 24GB GPU, which impacted downstream
performance improvements demonstrated by research such as
AlphaCode [18].

Additionally, our techniques were applied to pre-trained
VulBERTa embeddings, which were optimized solely for
source code and created without considering software metrics
or other objectives. Proper evaluation of these methods would
require pre-training the model from scratch with integrated
information.

In low-signal environments, the supplementary
techniques we evaluated could provide a more significant
benefit by injecting necessary structural or expert-defined
context that the model fails to learn from tokens alone.
Therefore, while our work questions the utility of added
complexity on established benchmarks, the value of these
techniques in more difficult, realistic scenarios remains an
open question.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates that computationally expensive
supplementary techniques offer diminishing returns for LLM-
based software vulnerability detection. Our large-scale study
found that four popular techniques which are multi-task
learning, software metrics injection, data expansion, and
hybrid representations. These techniques failed to
significantly outperform a simpler, well-tuned baseline. While
metrics injection is a useful tool for tuning the precision-recall
trade-off, we conclude that the path to better performance lies
in improving core model architectures and pre-training
objectives, not in adding external complexity. In this domain,
our evidence suggests that less, is in fact, more.

Future work will proceed in two primary directions. First,
we will focus on scaling and validation by testing the "less is
more" hypothesis on larger models and across challenging,
repository-level benchmarks such as VulEval and ReposVul.
Second, to properly evaluate hybrid methods, we will pursue
joint pre-training, where a model is trained from scratch with
integrated graph and token representations to overcome the
limitations identified in this study.

REFERENCES

[1] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V.
Le, ‘XLNet: generalized autoregressive pretraining for language
understanding’, in Proceedings of the 33rd International Conference on
Neural Information Processing Systems, Red Hook, NY, USA. 2019.

(2]

(5]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Hanif, H., & Maffeis, S. (2022, July). Vulberta: Simplified source code
pre-training for vulnerability detection. In 2022 International joint
conference on neural networks (IJCNN) (pp. 1-8). IEEE.

S. Lu et al., “Codexglue: A machine learning benchmark dataset for
code understanding and generation,” CoRR, vol. abs/2102.04664, 2021

Y. Zheng et al., “D2A: A dataset built for Al-based vulnerability
detection methods using differential analysis,” in 2021 IEEE/ACM 43™
International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2021, pp. 111-120.

O. Sener and V. Koltun, ‘Multi-task learning as multi-objective
optimization’, in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, Montréal, Canada, 2018, pp.
525-536.

M. U. Zahid, S. Kiranyaz, and M. Gabbouj, ‘Global ECG Classification
by Self-Operational Neural Networks With Feature Injection’, IEEE
Transactions on Biomedical Engineering, vol. 70, no. 1, pp. 205-215,
2023.

Z. Zhang and T. Saber, ‘AST-Enhanced or AST-Overloaded? The
Surprising Impact of Hybrid Graph Representations on Code Clone
Detection’, arXiv [cs.Al]. 2025.

A. Vaswani et al., ‘Attention is all you need’, in Proceedings of the 3 1st
International Conference on Neural Information Processing Systems,
Long Beach, California, USA, 2017, pp. 6000—-6010.

Z. Feng et al., ‘CodeBERT: A Pre-Trained Model for Programming
and Natural Languages’, in Findings of the Association for
Computational Linguistics: EMNLP 2020, 2020, pp. 1536-1547.

L. Phanet al, ‘CoTexT: Multi-task Learning with Code-Text
Transformer’, in Proceedings of the 1st Workshop on Natural
Language Processing for Programming (NLP4Prog 2021), 2021, pp.
40-47.

Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi, ‘CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code
Understanding and Generation’, in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing,
2021, pp. 8696-8708.

Y. Ding et al., ‘Vulnerability Detection with Code Language Models:
How Far are We?’, in 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE), 2025, pp. 1729-1741.

J. Fan, Y. Li, S. Wang, and T. N. Nguyen, ‘A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries’, in
Proceedings of the 17th International Conference on Mining Software
Repositories, Seoul, Republic of Korea, 2020, pp. 508-512.

M. B. U. Ahmed, N. S. Harzevili, J. Shin, H. V. Pham, and S. Wang,
‘SecVulEval: Benchmarking LLMs for Real-World C/C++
Vulnerability Detection’, arXiv [cs.SE]. 2025.

J. He and M. Vechev, ‘Large Language Models for Code: Security
Hardening and Adversarial Testing’, in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security,
Copenhagen, Denmark, 2023, pp. 1865-1879.

X.-C. Wen, X. Wang, Y. Chen, R. Hu, D. Lo, and C. Gao, ‘VulEval:
Towards Repository-Level Evaluation of Software Vulnerability
Detection’, arXiv [cs.SE]. 2024.

J. Hoffmann et al., ‘Training compute-optimal large language models’,
in Proceedings of the 36th International Conference on Neural
Information Processing Systems, New Orleans, LA, USA, 2022.

Y. Li et al.,, ‘Competition-level code generation with AlphaCode’,
Science, vol. 378, no. 6624, pp. 1092—-1097, 2022.

X. Wang, R. Hu, C. Gao, X.-C. Wen, Y. Chen, and Q. Liao, ‘ReposVul:
A Repository-Level — High-Quality =~ Vulnerability = Dataset’,
in Proceedings of the 2024 IEEE/ACM 46th International Conference
on Software Engineering: Companion Proceedings, Lisbon, Portugal,
2024, pp. 472-483.

J. B. Simon, D. Karkada, N. Ghosh, and M. Belkin, ‘More is Better:
when Infinite Overparameterization is Optimal and Overfitting is
Obligatory’, in The Twelfth International Conference on Learning
Representations, 2024.

P. He, X. Liu, J. Gao, and W. Chen, ‘DeBERTa: Decoding-Enhanced
BERT with Disentangled Attention’, in 2021 International Conference
on Learning Representations, 2021.

