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Abstract

Cardelli and Gordon'’s calculus of Mobile Ambients has attracted widespread interest as a model
of mobile computation. The standard calculus is quite rich, with a variety of operators, together with
capabilities for entering, leaving and dissolving ambients. The question arises of what is a minimal
Turing-complete set of constructs. Previous work has established that Turing completeness can be
achieved without using communication or restriction. We show that it can be achieved merely using
movement capabilities (and not dissolution). We also show that certain smaller sets of constructs are
either terminating or have decidable termination.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since its introduction in 1998, Cardelli and Gordon’s calculus of Mobile Ambients (MA)
[9] has attracted widespread interest as a model of mobile computaticamBientis a
vessel containing running processes. Ambients can move, carrying their contents with them.
The standard calculus is quite rich, with a variety of operators, together with capabilities
for entering, leaving and dissolving ambients. Subsequent researchers have increased this
variety by proposing alternative movement capabilities. We may mention Mobile Safe
Ambients (SA)15], Robust Ambients (ROAM]L3], Safe Ambients with Passwords (SAP)
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[17], the Push and Pull Ambient Calculus (PAR1], Controlled Ambients (CAJ27], and
the version of Boxed Ambients (BA3B] with passwords (NBA)5]. We shall use the term
Ambient Calculus (AC) to refer to all of these variants.

The question arises of what is a minimal set of constructs which gives the computational
power of Turing machines, i.e. Riring-completeOne way to tackle this is to encode into
the Ambient Calculus some other process calculus which is known to be Turing-complete.
Cardelli and Gordon showed how to encode the asynchronaadculus into MA[9]. The
encoding makes use of MA's communication primitives. However Cardelli and Gordon also
encoded Turing machines directly inpaire MA, where there is no communication. (In-
cidentally, Zimmef[28] subsequently encoded the synchronstezalculus without choice
into pure SA.)

Busi and Zavattar$8] showed how to encode counter machines into pure public MA
(where by “public” we mean lacking the restriction operator). Independently, Hirschkoff,
Lozes and Sangiordil4] encoded Turing machines into the same sub-calculus. In this
paper we follow up this work and investigate whether even smaller fragments of AC can be
Turing-complete. We concentrate entirely on pure AC. Our work is very much inspired by
that of Busi and Zavattaro; we follow them in using counter machines rather than Turing
machines.

The major question left open by previous work is whether pure AC withoubplee
capability which dissolves ambients can be Turing-complete. This question is of particular
interest in view of the decision which Bugliesi, Castagna and Crafa took to dispense with
ambient opening when proposing their calculus of Boxed Ambients [8AB,5,10] They
advocate communication between ambients where one is contained in the other, rather than
the same-ambient communication of MA. A similar model of communication is employed
in [23].

We give an encoding of counter machines into pure public MA withoubtlea capa-
bility (Theorem3.10, showing that this fragment is Turing-complete. The encoding also
demonstrates that both termination and the observation of weak barbs are undecidable prob-
lems. As far as we are aware, Turing completeness has not previously been shown for any
pure ambient calculus without the capability to dissolve ambients (although we note that
an encoding oft-calculus into BA with communication is given [B]).

Two different kinds of ambient movement were identified by Cardelli and Gojélpn
subjective and objectiv&ubjectivanovement is where an ambient moves itselfjective
movement is where it is moved by another ambient. For instanee], #] (an ambient
namedm containing procesB) is to enter another ambient Q ], then control can reside
in P or in Q. The standard calculus MA opts for subjective movement, while objective
movement (so-called “push and pull”) has been studid@ih We shall show that counter
machines can be encoded into the pure push and pull calculus (PAC) withoapdhe
capability.

A number of calculi are hybrids between subjective and objective movement: when
handling the entry ofs[ P ] into n[ Q ], they requireP andQ to synchronise. In Mobile
Safe Ambients (SA)15], an ambient must explicitly allow itself to be entered by means
of aco-capability It is straightforward to encode standard MA into SA by equipping each
ambient with the necessary co-capabilities. Therefore Turing completeness results for MA,
such as that mentioned above, will extend to SA, but not the other way round.
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Robust Ambients (ROAM|13] is another calculus where ambients must synchronise to
perform an entry. Fan[ P ] to entem[ Q ], P must name andQ must namen, which is a
symmetrical blending of subjective and objective movement. Turing completeness results
for either MA or PAC will extend to ROAM (since our encodings use only a finite set of
names).

As remarked above, MA and PAC are less synchronissdeerambients than SA or
ROAM. Movement can be made less synchroneiikin ambients if we require that move-
ment capabilities have no continuations, so that[if? ] enters:[ Q ] then neitheP norQ
canrely on when this has happened in the rest of their code. This may beassltedhronous
movement. We show that both subjective and objective calculi with asynchronous move-
ment (and without restriction) are Turing-complete—there is enough power in processes
being able to synchronise on dissolving ambients.

As far as infinite behaviour is concerned, ambients are usually endowed with the repli-
cation operator, and our main results focus on variants of the ambient calculus with this
operator. Nonetheless, Busi and Zavattaro have shown that the strikingly simple sub-calculus
having only theopen capability and empty ambients, but with restriction and recursion, is
Turing-complete. For completeness, we show that the same is true for a calculus having
only the push capability of PAC. Unlike in ther-calculus case, where recursion or repli-
cation are inter-definable, having one or the other in the ambient calculus has a significant
impact.

We are interested in findinthinimal Turing-complete fragments of AC. This entails
showing that smaller fragments are too weak to be Turing-complete. Busi and Zavattaro
have shown that in the fragment of pure MA with thgen capability, but without movement
capabilities, it is decidable whether a given process has a non-terminating compi@hation
We show the same decidability property for public fragments with capabilities allowing
movement in one direction only (either entering or exiting). We also show that in certain
smaller fragments (where replication is only allowed on capabilities) every computation
terminates.

In this paper we focus on tremputational strengtbf fragments of the ambient calcu-
lus, rather than their relative expressiveness, and therefore we do not investigate whether
different fragments (e.g. with synchronous or asynchronous movement) are mutually en-
codable.

Fig. 1 illustrates the main results of this paper for MA and BA. The arrows represent
inclusions. Fig2 illustrates the main results of this paper for PAC.

The paper is organised as follows. In SecRave recall various operators and capabilities
of the Ambient Calculus, together with their associated notions of reduction. In S8ction
we discuss various Turing-complete languages, with and withoutghe capability. In
Sectiord we show that certain fragments of AC with replication are in fact terminating. In
Section5 we show that certain other fragments of AC have decidable termination. Finally
we draw some conclusions.

1.1. Related work

Inindependent work, Boneva and Talli@fpresent an encoding of two-counter machines
(a Turing-complete formalism) into pure public BA. The fragment of MA we consider in
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pure MA
) BA in, out, open, restriction
Turing-complete [3] Turing-complete [9]

pure public MA
in, out, open
Turing-complete [8]

pure public BA
in, out
Turing-complete (Theorem 3.10)

N

in out
Termination decidable Termination decidable
(Theorem 5.34) (Theorem 5.21)

Fig. 1. Main results for MA and BA.

PAC
Turing-complete [22]

pure public boxed PAC
pull, push

Turing-complete (Theorem 3.13)

T T

pull push
Termination decidable Termination decidable
(Theorem 5.36) (Theorem 5.21)

Fig. 2. Main results for PAC.

TheorenB.10is similar to theirs, but they allow replication on arbitrary processes, while we
only allow replication on capabilities. They show that reachability and name convergence
(the observation of weak barbs) are both undecidable problems. As their encoding can
take “wrong turnings” and is divergent, they have left the Turing completeness of their
fragment of MA as an open question. We show Turing completeness for our fragment, and
as a corollary we obtain the undecidability of termination and of nhame convergence. Our
methods do not show that reachability is undecidable, while their methods do not show that

termination is undecidable.
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The focus of our work is different from that of Boneva and Talbot, in that we concentrate
on Turing completeness and termination, while they concentrate on reachability and model-
checking in the ambient logic.

2. Operators and capabilities

We will investigate a variety of operators and capabilities of pure Mobile Ambients
(MA) [9] and variants thereof. We Iét, Q, ... range over (process) terms aid . . . over
capabilities which can be exercised by ambients. We assumé\aafatames, ranged over
bym,n, ..., and a set of process variables (used for recursion), ranged over.by.

First we state a “portmanteau” language of (process) terms which contains afiehe
atorswhich we shall consider.

P:=0|n[P]|P|Q| MP |wP |!P| X | recX.P.

Here as usudl denotes the inactive process. We shall feel free to omit tralingnd write
empty ambients asg| | rather tham[0]. The termn[ P ]is an ambient namedcontaining
termP. The termP | Q is the parallel composition ¢f andQ. We write P! for the parallel
composition ofi copies ofP (the laws of structural congruence stated below will ensure
that parallel composition is associative). The tevfnP performs capability and then
continues withP. The termvn P is termP with namen restricted. As usual, restriction
is a name-binding operator. We denote the set of free names of &Ptéynfn(P). The
term ! P is a replicated term which can spin off copiedrdis required. The termec X. P
is a recursion in whictX is a bound process variable. We shall call terms with no free
process variables “processes” (the closed terms). We shall refer to “terms” when we mean
terms possibly with free process variables (i.e. open terms). Recursiobéxed24,8] if
in rec X.P any occurrence oK within P is not inside an ambient. We shall only require
unboxed recursion. If recursion is available theR can be simulated byec X.(X | P),
and so we shall never require both replication and recursion.

Here is the set of attapabilitieswe shall consider:

M ::=openn | openn | inn | inn | outn | outn | pushn | pulln.

The first capabilityopen n is used to dissolve an ambient nanm&ometimes we consider
the “safe” versior{15] where the ambient being opened performs “co-capabitipgn n.
The remaining capabilities all relate to movement. We can distinguish betsubgective
andobjectivemoves: The capabilitiem n andout n enable an ambient to enter or leave
an ambient named. This is subjective movement. Again, sometimes we consider the
“safe” versions of the capabilities where the ambient being entered or left performs “co-
capabilities”in n or out n. By contrast, objective movement is where ambients are moved
by fellow ambients. We consider the so-called “push” and “pull” capabilities of PAT
An ambient containing another ambient nanmezhn use the capabilityush »n to push the
other ambient out. Similarlpull n can be used to pull in an ambient nanred

Capabilities act as “guards”, in the sense that given a tdrA, capabilityM must be
consumed beforP becomes active. We shall say that an occurrendeiofQ is guarded
if Pis a subterm of some subter. R of Q.
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Structural congruence equates terms which are the same up to structural rearrangement.
It is defined to be the least congruence satisfying the following rules:

oO|p=P w0 =0,
PlO=Q|P vmvn P = vnvm P,
(PIOIR=P|I(QIR) 'P=P|!P,
v (P|Q)= (mP)|Qifn¢fn(Q) recX.P = P{rec X.P/X},

viam[P] = m[vn P]if m #n.

When we say that computation is deterministic (when discussing encodings of counter
machines into various ambient languages), we identify structurally congruent processes.

On several occasions we shall make useahmutative-associative structural congru-
ence=,, which is the least congruence satisfying the laws:

PlQ=w QP (PIQ)|R=cu P|(Q]R).

This has the property that for any tefrthe set{Q : O =., P} is finite.
The reductionrelation— between processes describes how one process can evolve to
another in a single step. We start by defining the reductions associated with the capabilities.

(Open) openn.P |n[Q] — P|Q,

(In) nlinm.P|Q]|m[R] — m[n[P|Q]|R],
(Out) m[n[outm.P | Q]| R] — n[P | Q]|m[R],
(SafeOpen) openn.P |n[openn.Q | R] — P | Q| R,

(Safeln) nlinm.P| Q]| mlinm.R|S]1 — m[n[P|Q1|R|S],
(SafeQut) m[n[outm.P | Q]|outm.R|S] — n[P| Q]| m[R|S],
(Pull) n[pullm.P | Q1| m[R] — n[P | Q| m[R]],
(Push) n[m[P]|pushm.Q|R] — n[Q|R]|m[P].

We shall be considering languages which only possess a subset of the full set of capabilities.
When we consider languages with capabitipen, we shall always have capabilibpen
as well, and we shall adopt rule (SafeOpen) and not rule (Open). Clearly, if a language
has capabilitie®pen, open and replication on these capabilities, then the effect of rule
(Open) can be simulated: every ambient can be made perfectly receptive to being opened
by convertingz[ P ] into n[ !open n | P ]. Similar considerations apply to capabilities
andin, out andout.

The remaining rules for reduction are

(Amb)i (Par) L’
n[P]—n[P] Pl1Q—P1|Q
(Res) P— P (Str)PEP P'— Q QEQ'
yn P — vn P’ P— Q

We write = for the reflexive and transitive closure f.

A languagess a pair(L, —) consisting of a set of processesogether with a reduction
relation—. We shall write(L, —) asL for short. We letZ, . .. range over languages. We
shall define a language by giving the set of processes. The reduction relation (and structural
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congruence) for the language will be tacitly assumed to be given by the set of all the rules in
this section which are applicable to the available operators and capabilities, except as noted
above for the “safe” and standard versions ofithendout capabilities. Acomputatioris
a maximal sequence of reductioAs — P; — - - -

The most basic observation that can be made of a process is the presence of top-level
ambients (i.e. unguarded ambients which are not contained in other amf@nWe say
thatn is astrong barbof P (P | n) iff P = vmy...m (n[ Q] | R) for someQ andR
(wheren # ma1, ..., my), andnis aweak barbof P (P || n) iff P = n.

3. Turing-complete fragments of AC

A basic measure of the computational strength of a process language is whether Turing
machines, or some other Turing-complete formalism, can be encoded in the language.
Cardelli and Gordoff9] established that pure MA can encode Turing machines. Busi and
Zavattard8] improved this result by showing that counter machines (CMs) can be encoded
in pure public MA.

We shall show that CMs can be encoded in pure public MA witlweh, which can be
called pure public BA. We shall also encode CMs in a version of MA with asynchronous
movement (i.e. no continuations after capabilities), but withofben capability.

A Counter Machine (CMip afinite set of registerRy, . . ., R, (b € N). EachR; contains
a natural number. We writ®; (k) for R; together with its contents Initially the registers
hold the input values. The CM executes a numbered list of instructigns. , I, (a € N),
wherel; is of two forms:

e i : Inc(j) adds one to the contents Bf, after which control moves th ;.
e i : DecJump(j, i’) subtracts one from the contentsRf, after which control moves to
I; 11, unless the contents are zero, in which cRgés unchanged and the CM jumps to
instruction:’.
The CM starts with instructiofiy, and executes instructions in sequence indefinitely, until
control moves to an invalid instruction number (which we can take to ¥€l), at which
point the CM terminates, and the output is held in the first register.

CMs as defined above are basically the Unlimited Register Machin@§pfThey use
a set of instructions which is minimal while retaining Turing completeri28k (In fact
CMs with no more than two registers are already Turing-complete.)

3.1. Criteria for turing completeness

Itis best to make clear what criterion for Turing completeness we shall use in this paper.

In the classical setting, a programming languagguisng-completdf for every partial
recursive function (equivalently, every CM-computable function) there is a program in
the language which computes it. It is understood that whenever the recursive function is
defined, the corresponding prograngisaranteedo yield the correct value (and not to fail
to complete, or to give wrong results).

We now consider what this might mean in the setting of process calculi, and ambient
calculi in particular. LetCM be a CM (program plus registers with their contents). Let
[CM] be the encoding €M in a target fragment of AC. We shall require the following:
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Criterion 3.1.

¢ If CMterminates themverycomputation off CM] completes successfully, meaning that
it signals completion to other processes in some manner, obtains the correct result and
makes the result of the computation (i.e. the contents of the first register) available in
usable form to potential subsequent computations to be performed by other processes.

e If CM does not terminate, thero computation of CM]| signals completion.

Notice that this criterion offersguaranteahat the CM will be simulated correctly, much
as any conventional Turing-complete programming language is guaranteed to compute any
partial recursive function.

The two requirements that completion is signalled to other processes and that the result
is available to other processes mean that the output is made fully explicit, and that we can
sequentially compose encodings of CMs in a straightforward manner. Again, this is what
we would expect in any conventional setting; fundamental results such as the undecidability
of the halting problem depend on being able to compose machines sequentially.

In our encodings, completion will be signalled by the appearance of a particular ambient
at the top level. So we can deduce from the undecidability of the halting problem for CMs
that for the target fragment it is undecidable in general for a prdeessl namen whether
P | n.

Although all our encodings in this paper will satisfy Criteri®ri, there has been recent
interest in weaker notions of Turing completeness, where success of the encoded computa-
tion is possible but not guaranteed. Here is a possible formulation of what might be referred
to as “may” (as distinct from “must”) Turing completeness:

Criterion 3.2.

¢ If CMterminates themomecomputation off CM]| signals completion to other processes.
Moreover, if any computation of CM]] does signal completion then it does indeed
complete successfully, meaning that it obtains the correct result and makes the result
of the computation available in usable form to potential subsequent computations to be
performed by other processes.

e If CM does not terminate, thero computation of CM]| signals completion.

Againwe have required that output is made fully explicit, allowing sequential composition
of encoded CMs. Again also it is likely that completion will be signalled by some kind of
barb, the existence of which will therefore be undecidable.

An example satisfying CriterioB.2is the encoding by Hirschkoff, Lozes and Sangiorgi
[14] of TMs into a fragment of MA, where the encoding may take a “wrong turning”. Such
wrong turnings are strictly limited, in that the process will haltimmediately in a state which
cannot be mistaken for successful completion. Since we give in this paper an encoding
satisfying Criterior8.1into a similar fragment, this does not provide an example of where
Criterion3.2can be met, but not Criteria® 1.

A particularly interesting recent result, involving CCI] rather than ambient calculi,
is the encoding by Busi, Gabbrielli and Zavatt@rp of CMs into CCS with replication
rather than recursion, denoted GC&s with the Hirschkoff et al. encoding, processes may
take wrong turnings and so there is no guarantee of success. The successful computation
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will terminate, while faulty computations are forced to diverge. So the encoding satisfies
the following criterion:

Criterion 3.3.

e If CM terminates thesomecomputation off CM] terminates. Moreover, if any com-
putation of [ CM]] does terminate then it obtains the correct result, which is available to
subsequent computations.

e If CM does not terminate, thero computation of CM]| terminates.

However the encoding does not satisfy Criterf®2, since there is no unambiguous
signal of completion. The successful computation will produce a barb to indicate that the
last instruction has been reached, but faulty computations can also produce this barb, so that
it can be misleading to other processes. In fact Busi et al. show that the existence of weak
barbs is decidable for CCSso0 that there is little prospect of satisfying Criteri®2 The
point is that termination is the only foolproof indication that a computation has completed
successfully, and this is not something that can be recognised by CCS. Of course, matters
would be different if one moved to a process language where termination can be detected,
such as ACHL1]. In fact, if termination can be signalled to other processes then Criterion
3.3is a special case of Criteridh2

As stated earlier, our encodings will satisfy Criteri8ri. They will also satisfy the
following additional property:

Criterion 3.4.
e If CMterminates theeverycomputation off CM] terminates.
e If CM does not terminate, thero computation of CM]| terminates.

We can therefore deduce that it is undecidable whether a process has an infinite compu-
tation. (In fact, this can still be deduced if the second item is weakened@d does not
terminate, theff CM]| has an infinite computation.)

However, since CriterioB.4is not required for Turing completeness, we cannot deduce
that a language fails to be Turing-complete simply because termination is decidable. There
could still be an encoding of CMs into the target language where all computations of encoded
CMs are infinite. When the CM terminates, the encoded CM reports a result in a finite
time before diverging. Despite this, it is possible to achieve separation results by showing
Criterion3.4for one fragment and decidability of termination for another fragment.

Observe that, unlike CriterioB.4, Criterion 3.3 does not imply that it is undecidable
whether a process has an infinite computation. In fact Busi et al. show that this is decidable
for CCS [6]. On the other hand, both criteria imply that the existencefioii® computation
(convergencgis undecidable, as Busi et al. state for GCS.

Many encodings (such as the one by Hirschkoff et al. referred to above) satisfy the
following one-step preservation propertyM moves in one step t6 M’ then[CM] =
[CM']. While one-step preservation is useful, we contend that it is needlessly strong for
Turing completeness. Consider for instance a Turing machine (TM) which is non-erasing
in the following sense: at each step it copies the tape contents to the next unused part of the
tape and then makes the change required by the instruction. Such a machine is clearly as
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powerful as a normal TM. However we cannot encode TMs into non-erasing TMs and satisfy
the one-step preservation property, since the non-erasing TM has extra information. (Note
that reachability of configurations is decidable for non-erasing TMs, since the tape contents
keep on increasing in size, so that Turing completeness does not imply that reachability is
undecidable.)

This is relevant to our concerns, since in our encodings we accumulate inert garbage. Just
as with non-erasing TMs, this is no barrier to Turing completeness.

3.2. Existing work

Busi and Zavattaro gave encodings of CMs into two fragments of pure AC. Both encodings
are deterministic (up to structural congruence) and satisfy Crigetiand3.4. The first
fragment, which we shall cally”, is defined by

P:=0|n[]] P|Q | openn.P | wvP | X | recX.P.
Theorem 3.5(Busi and Zavattar§8]). L}’ is Turing-complete

It is striking that empty ambients with no movement capabilities are enough. There is
an essential use of restriction to obtain the effect of mutual recursion. We shall show that a
similar result holds when we substitytesh for open (Section3.3).

Busi and Zavattaro’s second encoding of CMs is into the following language, which we
shall call L

P:=0|n[P]| P|Q | openn.P | innP | outn.P |!P.

Notice thatLic;p does not require restriction, and uses replication rather than recursion.
Clearly, L is exactly pure public MA.

. op - .
Theorem 3.6(Busi and Zavattard8] ). L, is Turing-complete

Independently, Hirschkoff, Lozes and Sangidfgf] have encoded Turing machines into
Li‘;p, with the additional syntactic constraint that the continuation of a capability must be
finite, that is, must not involve replication. As stated above (Se@id)) this establishes a
form of Turing completeness which accords with Criteio?(“may”), rather than Criterion
3.1(“must”).

We shall show that Theoref6 can be improved in two ways: the continuationsrof

andout can be removed (Secti@), or theopen capability can be removed (Sectidrb).

3.3. Recursion andush

Let L, be the following language (a fragment of PAZ1], except that we use recursion
instead of replication):

P:=0|n[P]1| P|Q | pushn.P | wP | X | recX.P.
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If we restrictP to be the empty process in the productiBn::= n[ P ] of the grammar

above, then this language can be regarded as asynchronous CCS, with the proviso that a
process must be enclosed in@mvironmenaimbient in order to enable pushing of empty
ambients to the outside. Consequently, the language is Turing-complete, as it is possible to
encode CMs in asynchronous C{8%. TheorenB.5was proved by encoding asynchronous
CCSIinLjP. We could prove Theore®.7 below by similarly encoding asynchronous CCS

in Lyp, but it is more convenient to encodg® in Lip.

Theorem 3.7. Ly, is Turing-complete

Proof. (Sketch) Letinert contextde defined as
C:=nle] | C|n[] ]| wC.

We defineL ;) as the set of terms{ P} whereP is a term ofL,, with all ambients empty
andC{e} is an inert context. The purpose®ffe} is to make sure that thgush operations in

P can be executed, by placifgnside an enclosing ambient. Apart from this consideration,
contexts cannot perform any reduction atall. We havezhgt, is closed under reductions.

Consider the encoding from; to Lp which is homomorphic on all terms except for

[open n.P] = push n.[P]. For allPin L;", we have that:
(1) foralln,if P — Q then either

(@ n[[P1]— n[LQT] | m[ 1, for somem; or

(b) thereara’ € LYY andm # nsuchtha = vm Q' andn[[P]] — vm(n[[Q'1] |

m[ 1);

(2) for all inert contextC{e} and R € Ly, if C{IPI} — R then there are’ {e},

0, 0’ € LYP andmsuchthatP — Q, O = vm Q' andR = C'{[Q']}}.
Point (1) shows that there is an effective way to simulate a reductidr§omn Lnfrp] (up
to losing an outermost restriction, in case (1b)). Point (2) guarantees that every reduction
of a term ofL ;] in the image of the encoding corresponds to a reduction of the original
term in L;" (again up to outermost restriction). The outermost restriction argnchn
be disposed of without altering the behaviour of the term because the resulting term is not
composed with any other terms. Both (1) and (2) follow by induction on the derivation of
—. O

3.4. “Asynchronous” Languages witkpen

In this subsection we show that there are Turing-complete AC languages even when we
do not allow continuations after movement capabilities. We show this both for objective
movement (Theorer8.8) and for subjective movement (Theoré&n9).

Let Lgb, be the following language (a fragment of PAC):

P:=0|n[P]| P|Q | openn.P | pushn.0 | pulln.O | lopenn.P.

Note that push and pull have no continuation. We might refer to thiasgachronous
movement. Also, replication is only used withen.
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op .
Theorem 3.8. Ly, is Turing-complete.

Proof. We describe an encoding of CMs infgh,. A CM will be encoded as a system
consisting of processes encoding the registers in parallel with processes for each instruction.
We consider a particular CM calle@M, with instructionsly, ..., I, and registers
Ro,..., Rp. LetCM(i : ko, ..., kp) represenCM when it is about to execute instruc-
tion 7; and storingg; in registerj (j <b). Let the (unique) finite or infinite computation of
CM =CMpbeCMpy, CMy, ...,CM;,...,whereCM; = CM (i : ko, ..., kpr).
First we describe the registe®; (k) is encoded as;[ k ], where the numeral proceks
is defined by

df
=2z

0% 1 k1 ¥k

Thus registers are distinguished by their outermost ambient.

In describing the encoding of the instructions, we must take into account the fact that the
decrement/jump instructions will accumulate garbage each time they are used, as the code
for either decrement or jump is left unused. We therefore parametrise our encoding by the
index| of the stage we have reached in the computationdeet, /) (resp.jump(i, 1)) be
the number of decrements (resp. jumps) performed by instruictioring the computation
of CM up to, but not including, stade

We denote the encoding of instructidnat stagd by [[/;]);, defined as follows:

[[Z : Inc()H df lopenst;.ri[pull r; |
s{pullrj | openr;j.stiy1l || pushstiy1]| pushstiyi],

[i : DecJump(j, iH1; g!open sti.ci[pull rj | openr;.(Sij | Ziji) ]|
lopend; |lopend] | (cil Zijir 0D | (eil Sij ImP@D,

df
Sij = d;[pulls | rj[pulls | opens.(e;[ ]| pushe;) ]| pushe; |stiyal 1]]
open ¢;.push d;,

df
Zjjir = open z.(d;[r;[ 01 | sty[ 11| push a)).

Notice that the continuations of all occurrencespén are finite (the same condition as
used in[14] and mentioned in Sectidh 2).
We define:

[CMG :ko..... k)l T st;[ 1] [holli | - | [Zalli [ rolko ] | -+ | rplkp 1.

The encoding o€M is [CM]| df [CMollo- The instructions start without any garbage. The
encoded CM will go through successive staged/; ];. We show that for each non-terminal
stagel, [CM;1; = [CM;+1]l;+1, and thafCM;]|; is guaranteed to readtCM;11l;+1.

An instruction proces§/;]; is triggered by the presence of; at the top level; the
instruction starts by consumirsg;. The execution of /;]); finishes by unleashing thss;
ambient corresponding to the next instruction. Throughout the computation, at maest one
ambient is present. The encoded machine terminates if and when the asnbiemtppears
at the top level. There are various cases depending on the nature of the instfuction



S. Maffeis, I. Phillips / Theoretical Computer Science 330 (2005) 501-551 513

An instruction process of the forifi : Inc(j)1; creates a new registef[ s[ 11, which
already contains the successor ambient needed to perform the increment. The new register
pulls the existing; into its core, and strips off the outer casing. The instruction then signals
completion by pushing out the trigger for the next instruction. Computation is entirely
deterministic. We have:

costL T IncG)Tr L rjlk] .. = . ostipal 1] IncGTiga | rjlk+1]. ..

An instruction process of the foriffi : DecJump(j, i’)]; creates a new ambient, pulls

in registerr; and strips off its outer layer, leaving the numeral. This numeral has outermost

ambient eithes or zdepending on whether the numeral is zero or a successor.

e Ifthe numeral is a successor it is pulled inside amhbigmind then inside a new register
ambientr; where it is decremented. The ambielf containing the new incremented
register along with the trigget; 1, is then pushed out @f, and opened to unleash the
trigger. We have:

coosti[ 11 i - DecJump(j, i | rilk+17...
= ...stipa[ 1| [ : DecJump(j, i | cil Zijir 1| rjlk]. ..
=...stip1[ 1| [i : DecJump(j, i) 42 | 7 [k]. ..

The execution of the decrement leavgsZ; ;- ] behind as garbage, which does not take
any further part in the computation. Again, computation is entirely deterministic.

e Ifthe numeralis zero, this is detecteddyyen z, and a new ambient, containing;[ 0]
along with the triggest;/, is then pushed out af, and opened to unleash the trigger.
We have:

oot 1] [ s DecJump(y, i | r;[0]. ..
= ...sty[ ]| [i : DecJump(j, i) il Sij11 r][Q]
=...sty[ ]| [[i: DecJump(j, i) 41| r;[0]...

Again, computation is entirely deterministic.
Finally, we see that i€ M} is terminal (so that; = a+1) then[CM. ]| has no reductions.
[CM. 1. displays barlst, 1 to indicate termination. The result of the computation, stored
in register 0, is usable by subsequent computations. On the other h&@, dbes not
terminate, then neither dog<€M]|, and the barlst, 1 will never appear. There are no
“bad” computations, i.e. ones which halt in a non-final state, diverge, or produce unintended
behaviour. We have a encoding which shows Turing completeness, and also undecidability
of termination and of weak barbs[]

We can achieve exactly the same asynchrony for subjective movement, though the en-
coding is more elaborate. Lé..o”a be the following language:

P:=0|n[P]| P|Q | openn.P | inn.0 | outn.0 | !openn.P.
op . . .
Theorem 3.9. L, is Turing-complete(Proof: see AppendiR.)

This resultimproves Theore&6. Moreover, just as with Theore8, CMs are encoded
in such a way that the continuations of all occurrencespeh are finite.
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3.5. Languages withoutpen

In this subsection we encode CMs into a language with just the standard movement
capabilities, namelin andout.
Let L;, be the following language:

P:=0|n[P]| P|Q | innP | outn.P |!inn.P | loutn.P.

ClearlyL;, is a sublanguage dfi‘;p as defined earlier. The major difference is thatdoes

not have thepen capability. Also, replication is only applied to the capabilities. We shall
see in Sectiond and5 that the computational strength of a language can depend on whether
replication is applied to capabilities or to ambients.

Theorem 3.10. L;, is Turing-complete

Proof. We sketch the encoding of CMs i, here; see AppendiB for the details. One
problem we encountered was in dealing with instructions. Since each instructi@as

to be used indefinitely many times, one might encode it ag P; ], where each time

the instruction is needed a new copyef P; ] is spun off. But then the previously used
copies may interfere with the current copy, so that for instance acknowledgements may get
misdirected to olgp; ambients still present. This issue would not arise if we could destroy
unwanted ambients using theen capability.

Registers consist of a series of double skifg ...]] with z[ ] at the core. We use a
double skin rather than the more obvia@is[ z[ 1]1]style. Thisis to help with decrementing,
which is done by stripping off the outermasdind then in a separate operation stripping off
thet ambient now exposed.

We follow Busi and Zavattaro in carrying out the increment of a register by adding a new
s[¢[ 11 immediately surrounding the central carfe]. This seems preferable to adding a
new double skin on the outside, since it keeps the increment code and decrement code from
interfering with each other.

The basic idea is that each instructifnis triggered by entering st; ambient. All the
other instructions and all the registers enter as well—a monitor process checks that this
has happened beforgis allowed to execute. So the computation goes down a level every
time an instruction is executed. When an instruction finishes, it unleashss #mabient
to trigger the next instruction. If and when the computation finishes, the first register is sent
up to the top level, where it can serve as input for possible further computations.

Therefore we have Turing completeness. Our encoding furthermore establishes that the
weak barb relation is undecidable, and that having a non-terminating computation is unde-
cidable.

As the computation proceeds, inert garbage accumulates in both the instructions and the
registers. We handle this much as in the proof of ThedeBnletting the encodings of the
instructions and the registers be parametrised with the current step in the computation.

The computation is largely deterministic; the exceptions are that, between executions of
instructions, the instructions and registers make their way down a level in an indeterminate
order, and there is also some limited concurrency in the incremént.
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Remark 3.11. We shall prove that if we removeut from L;, the resulting language is
terminating (Theorerd.8), and similarly if we removén the resulting language is termi-
nating (Theorend.14). Since terminating languages cannot be Turing-complete, this will
establish thaL;, is a minimal Turing-complete language.

Remark 3.12. In independent work, Boneva and Tall@] have encoded two-counter
machines into the following language:

P:=0|n[P]| P|Q | innP | outn.P |!P.

(Notice that this language differs slightly from,, in that it allows replication of arbitrary
processes, including ambients.) However, their encoding can diverge and take wrong turn-
ings into error states, which means that they do not claim Turing completeness. Nevertheless
because they establish one-step preservation, they can show that it is undecidable whether
one process is reachable from another, and also wh&hgm for an arbitrary procesB
and namen.

It is an open question whether reachability for arbitrary processés,irs decidable.
Even if reachability were decidable fér,, this would not contradict Turing completeness
(see Sectiol.1).

We have just encoded CMs into langualyg with the standard subjective movement
capabilities (and withoubpen). We can also encode CMs in the following langudgg
with objective moves:

P:=0|n[P]| P|Q | pushn.P | pulln.P | !'pushn.P | !pulln.P.
Theorem 3.13. L, is Turing-complete(Proof: see Appendik.)

Remark 3.14. We shall prove that if we removgush from L, the resulting language
is terminating (Theorem.8), and if we removepull then termination is decidable for the
resulting language (Theorem21).

4. Terminating fragments of AC

We would like to know whether the languade, of Section3.5is a minimal Turing-
complete language. As a partial answer to this question, we shall show in this section that if
we remove one of the movement capabilities (eithear out) then the resulting language
is in fact terminating, i.e. every computation terminates.

Definition 4.1. A languageg L, —) is terminatingif every computation is finite.

In our proofs in this section we shall use a well-founded ordering on multisetsilfset
over a sefA is a functionS: A — N, whereS(a) represents the multiplicity ai in S' A
multiset isfinite if S(i) = O for all but finitely manyi € N. Let FMS(A) denote the finite
multisets oveA.
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Definition 4.2. Suppose thaA is partially ordered by. We define~ to be the transitive
closure of the relation between multisets o&@vhere one multiset is obtained from another
by replacing an element by any finite number (including zero) of smaller elements.

An ordering iswell-foundedf it has no infinite decreasing chain.

Proposition 4.3(Dershowitz and Mannfl1]). If (A, <) is a well-founded partial order-
ing, then so iIFFMS(A), <).

We shall apply this proposition with as the natural numberf§ with the standard
ordering.

4.1. Termination within

Let L, be the following language:

P:=0|n[P]| P|Q | innP|innP | pulln.P
| linn.P | linn.P | 'pulln.P | vn P.

Notice thatL; is got fromLj, by removing theout capability and (in order to sharpen the
next theorem) adding the co-capabilityof SA, thepull of PAC, and restriction. We shalll
prove thatLﬁp is terminating (Theorem.8below).

We start by eliminating restriction amdll. Letm € N be a single designated name. Let

LI'I“ be the following language:

P:=0|m[P]l|P|Q|inmP | inmP |linmP |!inm.P.

We define an encodinf—] from L, to LT as follows:

o1 £ o Ipull n.PT £ i m.[ PY,
P E mlvinm 0PI [linaPT L vinm.ppl,
e o1 L gpyinel [inapP] L 1P,
finn.P] & inm.[P] [pulln.P] & 1inm.[P].
linn. Pl < inmppry b P L [P

The idea of the encoding is that if we eliminate all restrictions then all existing reductions
can still occur (as well as potentially some new ones). Also, making all names the same can
only increase the possibility of reductions. Finally, sirid“E has only one name, we can

simulatepull by in , provided we equip each ambient witin m; this again cannot remove
any potential reductions, and may well add new ones.
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Lemma4.4.LetP, Q € Lﬁp.
(1) If P = Qthen[P] =[OQO].
(2) If P — Qthen[[P] — [Q].

Proof. Straightforward and omitted. ]

It follows that in order to show thdtﬁp is terminating, it is enough to show thlag‘ is
terminating.
We first define theapability nesting depth (cna)f an LI’In process:

cnd©) Lo end(nm.P) L end(p) + 1,
endm[ P ) & cnd(p) end(tinm.P) L end(P) + 1,
end(P | 0) ¥ maxend(P), cnd(Q)) cnd(linm.P) & cnd(P) + 1,
cnd(in m.P) da cnd(P) + 1.

Note that if P = Q thencnd(P) = cnd(Q).

We next define theapability degre€abbreviated to cd, or simply degree) of an ambient
m[ P ]. Thisis the cnd of theapability componerdf P, defined as follows. Any proceBss
structurally congruent t&<2P | P2™mP where the capability componeR€?3P is the parallel
composition of processes prefixed by capabilities or replicated capabilities, and the ambient
componentP?™? s the parallel composition of ambients. An empty parallel composition

is of course the nil process. We led(m[ P ]) dt cnd(P@P), This is well-defined with
respect to structural congruence. Notice that the degree of an ambient can reduce during a
computation, as aresult of it entering another ambient. It can never increase. We shall refer to
theinitial degree of an ambient, which is its degree when it first becomes unguarded during
a computation. Note also that the degree of an ambient is unaffected by other ambients
entering of whatever degree.

During a computation an ambient can produce “children” inside itself, as it enters other
ambients. For instance;[ !in m.m[ ]] can produce a series of nex{ ] ambients. These
children will have strictly lower capability degrees. For a given ambignP ] there is a
fixed finite bound on the number of children which can be produced by a single reduction.

Strictly speaking, keeping track of an ambient during a computation relies on labelling
ambients. This can be done straightforwardly; we avoid mentioning it further, in order to
improve readability.

Proposition 4.5. Llrln is terminating

Proof. We give two proofs of termination: the first relies on assuming a minimal infinite
computation and then showing that there must be a smaller one, while in the second proof
we restrict attention to a “top-level” reduction strategy, assign multisets to the processes in
a computation and show that they are decreasing in a particular well-founded ordering.

Method 1. Suppose thaPp — --- — P; — ... is an infinite computation. LeDg be the
maximum of the degrees of the unguarded ambient&irDuring the computation new
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ambients are created as children of existing ambients. They will all have initial degree less
than their parents, and thusDg. Since the computation is infinite, infinitely many children
must be created (with finitely many ambients, computations must be finite, since no pair of
ambients can enter each other more than onceDLetDg be the maximum degree at which
infinitely many children are created. In the whole computation there are only finitely many
ambients with initial degree- D. At least one of these must lo&initely productive that
is, produce infinitely many children. Now let> 0 be the number of infinitely productive
ambients of initial degree D.

We have shown how to assigvalue(D, ¢) (D >0, ¢ > 1) to each infinite computation.
Now let C: Py — --- be an infinite computation with a minimal value @, c) in the
well-founded lexicographic ordering

(D,c)<(D',c)iff D<D or(D=D"andc<c).

We shall obtain a contradiction by showing that there is another infinite computation with
a smaller value.

Choose any infinitely productive ambient of initial degred®. We can assume that it is
available at the start df, by removing a finite initial segment &f if necessary (this might
reduceDy, but does not chande andc). Each procesg; of Cis of the formC{m[C | A1},
where we display the outer context and inner contents of our chosen ambieng thith
capability component, andlthe ambient component. There are four types of reduction:

(1) An outer reduction involving the context alone produ€és:[ C | A1}

(2) An inner reduction involving the contents alone produ€és:[C | B}, where
A — B.

(3) The chosen ambient can enter an ambient in the context, producing childesvd
resulting inC’'{m[C’' | A | A"]}.

(4) The chosen ambient can be entered by an ambi¢®] in the context, producing
childrenA” and resulting irC’{m[C" | A | A’ | m[ R1]}.

Since the ambient is infinitely productive, there must be infinitely many reductions of types

(3) or (4).

We shall alterC in two ways. First we remove all type (2) reductions. This does not
affect any of the other reductions, since type (1) reductions are independent of the ambient
contents, and type (3) or (4) reductions only depend on the capability compavelmich is
unaffected by type (2) reductions. We get a new computatian?} — --- — P/ — - -,
with Py = Po. It must be infinite, since it still has all the type (3) or (4) reduction€ of
Let the value ofC’ be (D', ¢’). Any ambients inC’ must have already been (@ Hence
(D', )< (D, ¢).

Now let us alterC’ by making the chosen ambient totally unproductive, as follows:
Suppose thaPy = P§ = Co{m[ Co | Ao ]}. We translat&y to C;, by replacing any ambient
m[ R] by the nil process (and translating all other operators homomorphically). All the
reductions ofC’ can still proceed, since type (1), (3) or (4) reductions do not depend on the
ambient component of the chosen ambient, and the same capabilities are exercised by the
chosen ambient, even though no children are produced. We get a new infinite computation
C":Pf— > P —

Let the value ofC” be (D", ¢”). Any ambients inC” must have already been .
Hence(D”, )< (D', ¢’). Also we have made an infinitely productive ambient of degree
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> D> D’ into one which is totally unproductive. We may or may not have reduced the
degree of the chosen ambient, but this does not matter. We have certainly reduced the
number of infinitely productive ambients of degreeD’. So eitherD” < D’ or ¢’ < ¢'.
Hence(D”, ¢"") < (D', ¢') < (D, c¢). This contradicts the minimality df. [

Before giving the second method we need some further definitions and lemmas.

Any reductionP — Q is either “top-level” (i.e. one top-level ambient enters an-
other), or else “lower-level” (the reduction occurs inside a top-level ambient). In formal
terms, the difference is that rule (Amb) (Sectidnis used in the latter case but not in
the former. Let us writeP —op Q for a top-level reduction an® —ower Q for a
lower-level reduction. The reflexive and transitive closures are denoteg gy = iower
respectively.

Lemma 4.6. Let P, Q beLi'Tn processes. IP =jower—top Q thenP —iop=>iower Q.
Proof. Straightforward and omitted.[]
Letus writeP \,  Qif P=m[ Q]| R for someR.

Lemma 4.7. Let P be aLI’In process. Suppose that P has an infinite computakion-©.
ThenP =op\—7.

Proof. The computatior? —“ will have finitely many— top reductions. Using Lemm&.6
we can transform it into another infinite computation with-al},, reductions carried out
at the beginning? =p P’ — |, ThenP’ must have at least one top-level ambient,
and there must be an infinite computation inside one of these top-level ambie@ts So

P =op P’ \{ Q - as required. O

Proof of Proposition 4.5, Method 2.Let P be anLi'? process. From Lemm&.7, we see

that if P has an infinite—~ computation therP has an infinite=top\, computation. To
show that infinite=top™\ computations are impossible, we assign multisets to processes
and define an ordering on these multisets which is well-founded and strictly decreasing with
respect to=top\(.

For a completely formal proof we would have to develop an apparatus for labelling
ambients and members of multisets in order to make precise the correspondence between
the two. We have suppressed all of this in the interests of readability.

Let Py, ..., P;, ... be aninfinite=p\, computation (i.eP; —top Pi+1 0r P; \( Pi11,
and there are infinitely mariyfor which P; \, P;;1). We assign to each; a finite multiset
S;. Its elements will be ordered pai(g, T') consisting of a natural numberand a finite
multisetT of natural numbers. The multis§t will satisfy the following:

(1) Foreachd, T) € S;, and for eacld’ € T we haved’ <d.

(2) The numbersis; are precisely all degrees of unguarded ambiengs:ithere is a bijec-
tive correspondence which maps each unguarded ambjen{ of P; tod > cd(m[ Q 1)
in S;, either as the left-hand component of soieT’) € S; or as somel € T where
d,T)eS;.
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(3) If m[ Q] occurs at the top level inP;, then m[ Q] corresponds tad in some
d,T)inS;.

(4) If m[ R] corresponds td’ € T for some(d, T) in S;, thenm[ R ] is unguarded inside
somem[ Q ] corresponding tal.

We createSy as follows: For each unguarded ambieritP’ ] of degreed contained inPy,

we add the paitd, ) to So. Plainly properties (1-4) are established.

In the computation there are two kinds of reductiorsep and™\. Suppose tha®; — top
Pi11. A —op reduction consists of an ambienf Q1] of degreed; entering an ambient
m[ Q2] of degreed,. To these ambients there correspond elemeljtsr1) and(dy, T>) in
S;, with dlgdi anddzgdé. (Since we are doing a top-level reduction the two ambients
are represented in the first elements of the pairS; pby (3).) The— top reduction will
produce children ofi[ Q1 ] of degree< d1; we add their degrees @ . The reduction will
also produce children @[ Q2 ] of degree< dy; we add their degrees . In this way we
createS; ;1. It is easy to check that properties (1-4) are establishes; far

Now suppose thap; \, P;1+1. The reduction selects a top-level ambient P; 1 ],
and keepsP; 1 while discarding its enclosing ambient and any other top-level processes
in parallel withm[ P;+1]. Suppose that:[ P;11] is of degreedy and corresponds to the
element(d;, To) of S;. First we remove frons; all pairs corresponding to the discarded
top-level processes and their contents. Note that by (3) and (4), if any member of some
(d, T) is to be removed, then so are all the remaining members. Now we re@Qve)
from S;, and for eachl € Ty we add(d, ¥) to S;. Note that eacld < dogdé. In this way
we createS; 1.

Properties (1), (2) and (4) are clearly establishedSfqi. As to (3), suppose that[ R ]
is a top-level ambient i, . 1. Suppose thai[ R ] corresponds ta’ € T for some(d, T)
in S;+1. Then this(d, T) was already ir§;. Therefore by (4) folS;, m[ R ] was inside some
m[ Q] corresponding tal. The only way thatz[ R ] can be top-level irP; ;1 is form[ Q']
to bem[ P;11], which means thau[ R ] corresponds td@’ in some(d’, #) in S;+1. Thus
we have established (3).

Recall the well-founded ordering on multisets of Definitiér2 and Propositiord.3.

If we consider just the first members of the pairs in the multiSetwe see that a>op
reduction leaves the set unchanged, whilg eeduction removes one element and replaces

it with a finite set of smaller elements (it also removes zero or more elements completely,
corresponding to the discarded top-level processes). So-eagh\ reduction takes us
down in the> ordering. By well-foundedness efthere is no infinite=op\, computation,

and thus no infinite> computation. [

Theorem 4.8. L, is terminating

Proof. By Lemma4.4 and Propositiod.5. [
4.2. Termination witlout

Itis also the case that a language watlt as its only capability is terminating. Lét,
be the following language:

P:=0|n[P]| P|Q | outn.P |!outn.P | vn P.
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Notice thatL, is got from L;, (Section3.5) by removing then capability and (in order
to sharpen the next theorem) adding restriction. We shall showlthas terminating
(Theoremd.14below).

The strategy we adopt is as follows: Firstly, as with Theore8) it suffices to show
that the sublanguage without restriction, and where all names are identified, is terminating.
We associate a finite multiset of natural numbers with each process and show that each
reduction produces a smaller multiset in the well-founded orderinfiDefinition 4.2 As
the multiset is sensitive to the number of nil processes and unfoldings of replications, we
have to use a non-standard notion of reduction.

We start by eliminating restriction. Let € A/ be a single designated name. L&t be
the following language:

P:=0|m[P]]| P|Q | outm.P | 'outm.P.

We define an encodin—] from L, to LY as follows:

o1 £ o foutn.P] & out m.[ P
P E P11 [outn.P] & toutm.[P]
VAR T N e e ra]

Lemma 4.9. Let P, Q € L,.
(1) If P = Qthen[P] =[Q0].
(2) If P — Qthen[P] — [O].

Proof. Straightforward and omitted. ]

We associate a finite multiset of natural numbers with each procdss.&ach element
in the multiset measures the number of ambients working from an occurredoewfards.

ms0) & (0} ms(out m.P) & ms(P)
msm[P1) L (k+1:k e ms(P)} ms(loutm.P) X ms(P)
ms(P | 0) L ms(P) Ums(0).

Notice that this definition will produce different multisets for processes which are struc-
turally congruent. For instanceys(m[0]) = {1}, while ms(m[0 | 0]) = {1, 1}. Also,
ms(!out m.0) = {0}, while ms(out 1.0 | ! out m.0) = {0, 0}. We therefore replace by
commutative-associative structural congruesagg (Section2), where therule® | P = P
andP = P |! P are disallowed.

Having adjusted structural congruence, we also need to change to a non-standard reduc-
tion relation—'. We replace the usual rule (Out) by the following:

(Outl)  m[m[outm.P| Q]| R] —' m[P|Q]|m[R]
(RepOutym[m[ loutm.P | Q1| R] =’ m[P |loutm.P | Q]| m[R].

The rule (RepOut) ensures that replication is only unfolded as needed. Since we no longer
can add nil processes using structural congruence, the two new rules also come with variants
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whereQ is not present, and wheiR is not present (and we writ@ instead ofR in the
derivative). The remaining rules are:

P -’ P P —'p P=,P P —-'"Q Q=40
n[P]l—'n[P'] P|Q—"P|Q P—'0 ‘

We next show that we have not removed any possibilities for computation by changing the
reduction relation.

Lemma 4.10. Let P, Q be L' processes.
Q) If P ==’ QthenP —'= Q.
2) If P — QthenP —'= Q.

Proof. Lengthy and omitted. It is similar {25, Lemma 1.4.15and[8, Propositions 4.11,
4.12] butin those cases a labelled transition system was being related to an unlabelled one,
whereas here we are relating two unlabelled transition systems.

Lemma 4.11. Let P be anL process. If P has an infinite> computationthen P has an
infinite —’ computation.

Proof. Suppose that there is an infinite computation
P=P—> - —> P — -

We create an infinite computatioh = Py —' --- =" P/ =’ ... with P, = P/ (all'i),
defining P/ by induction as follows. Suppose that= Py —' --- —' P/ with P/ = P;.
We haveP; — P;; 1. Hence by Lemma.1Q2) there isQ such that?; —' Q = P;y1.
ThereforeP! = P; -’ Q. By Lemma4.l_(11) there isP/ , such that?/ —' P/, = 0.
Clearly P/ | = Piy1, and P/, is as required. [

Now we establish that>’ reductions take us down in the multiset ordering of
Definition 4.2

Lemma 4.12. Let P, Q be L} processesand letC{e} be anL}' context.
(1) If ms(P) = ms(Q) thenms(C{P}) = ms(C{Q}).

(2) If ms(P) = ms(Q) thenms(C{P}) = ms(C{Q}).

3) If P =., O thenms(P) = ms(Q).

(4) If P =’ QO thenms(P) > ms(Q).

Proof. (1) and (2) are by structural induction on contexts. (3) uses (1), and is straightforward.
(4) uses (2) and (3), and is by induction on the derivatioPof>" Q. As an example,
consider the rule (RepOut) in the case wh@randR are omitted:

m[m[ 'outm.P]] =" m[P |loutm.P]|m[0]
We have

ms(m[m[ loutm.P1]) ={k+2:k € ms(P)}
ms(m[ P |loutm.P]|m[0]) ={k+1:k € ms(P)Ums(P)}U ({1}.
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Clearly{k +2 : k € ms(P)} = {k+1:k € ms(P)Ums(P)} U {1}. We omit further
details. [

Proposition 4.13. (1) (L™, —') is terminating.
(2) (LY, —) is terminating.

Proof.
(1) This follows from Lemmat.12and the well-foundedness sf (Propositiord.3).
(2) This follows from (1) and Lemma4.11 [

Our main result now follows:
Theorem 4.14. L, is terminating.
Proof. This follows from Propositiod.132) and Lemmat.92). O

Remark 4.15. From the proof of Lemmd.124) we see that a single reductieh—" Q
leads to at most 3 smaller items being substituted for each elepa@ndf ms(P). An
example is

m[m[ 'outm.0]] =" m[O|'outm.0] | m[O],

where{2} becomesl, 1, 1}. ThusifanL process hasl k Os and< k ambients, its multiset
will be bounded byk, ..., k} (k copies ofk), and the maximum length of a computation
will be bounded by.3~1. This upper bound also applies}', —) computations by the
proof of Lemma4.11, and to(L,, —) computations by Lemmé&.9. We obtain that if ari.
process has< k operators then any computation has length boundéd3y®. This bound
can no doubt be considerably improved.

Notice that weeanhave infinite computations in the language where we add co-capability
out to L, in view of the counterexample

n[nloutn]|!outn.n[outn]].

This is equally the case when the co-capability is located at the uppefl1&jel
n[nloutn]]|!outn.n[nloutn]]

With “push” as the only capability we can have infinite computations, e.g.
n[n[1|!pushn.n[]].

Remark 4.16. If we combine replication with thepen capability we can create non-

terminating processes suchsgs] | ! open n.n[ ]. Busi and Zavattar{8] showed that ter-

mination is decidable for processes built with replication apen (see Theorens.21in
Sectionb).
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5. Fragments of AC with decidable termination

We have seen (Theoref10 that pure Boxed Ambients is Turing-complete. In the
previous section we saw that the fragments with just one movement capability (eiter
out), and replication just applied to that capability, are terminating. In this section we look
at the same fragments, but extended with full replication. We shall show that termination is
decidable in the fragments with (respectivelyut) and full replication. In the case ofit,
we shall be able to go further and show that the fragmentaithopen and full (unboxed)
recursion has decidable termination. In the next subsection we start with this result, which
builds on the work of Busi and Zavattaro.

Definition 5.1. We shall say thatermination is decidablén a languagé&L, — ) if, given
any proces® of L, it is decidable whethdP has an infinite computation.

Remark 5.2. We saw in Sectio. 1that having decidable termination does pet sémply

that a language is Turing-incomplete. Nevertheless, whenever we showed that a language
was Turing-complete, it was also the case that termination was undecidable. This enables
us to achieve a separation between such languages and the ones discussed in this section.
See Remark.22below.

5.1. Decidability forout andopen

Recall that Busi and Zavattaf8] showed that pure MA, with no movement capabilities
and with (unboxed) recursion rather than replication, is Turing-complete (Thed®m
They also showed that if one replaces recursion by what theymastricted recursiothen
termination is decidable. (Recursion is said to be unrestricted if, for each preces<,
no free occurrence ofin P occurs inside a subprocess of the fonmQ.) Their language,
which we shall caIILﬁﬂ,, , is defined by

P:=0|n[P]| P|Q | openn.P | wmP | X | recXP

where recursion is unboxed and unrestricted.
Theorem 5.3(Busi and Zavattargd]). Termination is decidable fotﬁﬁ,r.

In particular, termination is decidable both in the sublanguageapi¢h, restriction and
replication, and in the sublanguage witben and recursion (but not restriction).

The proof of Theorem5.3 depends on the theory of well-quasi-orderings and
well-structured transition systenj&2]. We briefly review the relevant definitions and
results.

Definition 5.4. A quasi-ordering(qo) is a reflexive and transitive binary relationwalI-
quasi-orderingwqo) is a qo(X, <) such that for every infinite sequenes: . . ., x;, ... of
members oK, there exist, j € N such that < j andx; <x;.
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Definition 5.5. A transition systeni{S, —) is a set of stateS together with a transition

relation—. Fors € S let Succ(s) at {t: s — t} and letDeriv(s) df {t:s=1t}.(S,—)is
finite-branchingf for all s € S, Succ(s) is finite.

Definition 5.6. A structure(S, —, <) is awell-structured transition system (with strong

compatibility)if

e (§,—) is atransition system, and

e < isawqoonS and

e < is upwards compatible with>, meaning that if — r ands <s’ then there exists
such that’ — ¢’ andr <¢'.

Theorem 5.7(Finkel and Schnoebelen, special cas¢l@, Theorem 4.6] Let(S,—, <)
be a well-structured transition systemith strong compatibilitywhere< is decidable and
Succ(s) is finite and computable in s. Then it is decidalgiwens € S, whether there is an
infinite — computation starting from.s

In order to apply this theorem tbi’ﬁ,,, Busi and Zavattaro firstly need to show that
Succ(P) is computable. The problem is that the standard reduction relation is not finite-
branching, since it allows recursions to be unfolded without limit (using structural congru-
ence). They therefore define a different reduction relation using a labelled transition system,
which only allows unfolding as required to perform a reduction.

Next they define a multiset-style orderiagon processes, under which, for example,
P<P | Q.Inshowing thak is a wqo, the essential ingredients are:

(1) Bounded depth: there is a bound on the depth of all derivatives of a process (in terms
of nesting of ambients and restrictions), and

(2) Finite name-space: the set of names used in all derivatives of a process is finite.

The bounded depth property comes straightforwardly from the facts that recursion is un-

boxed and that there are no movement capabilities. The finite name-space property comes

from the fact that recursion is unrestricted, so that it is never necessary to extrude the scope

of a restriction, with the renaming that this entalils.

We wish to extend Busi and Zavattaro’s work by applying it to a fragment witlothe
capability. The starting point is to note that ant reduction can never increase depth.
Therefore we can fulfil the bounded depth property. In order to fulfil the finite name-
space property we find it necessary to disallow restriction. The reason is that with ambient
movementitbecomes essential to extrude scopes, and so we may need to create unboundedly
many new names during a computation to avoid clashes. This is true even if we reduce the
language by replacing unrestricted recursion with replication (any replication can be seen
as an unrestricted recursion, but not, of course, vice versa). Consider for example

m[ 'va (n[outm]|n[])]
—vny (mal ]I mlna[ T!'vn mloutm] [n[ D]
— vainp (nal 1| nal 1| mlnal 1| n2l 1|!vn (n[outm] |[n[ D]

There is no way to make the scopesnaf no, ... disjoint, and so the computation uses
infinitely many names.
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We shall show that termination is decidable for the following language, which we
call LoP:

P:=0|n[P]| P|Q | openn.P | openn.P
| outn.P | outn.P | pushn.P | X | rec X.P.

(Recursion is unboxed ihg?.) The rest of this subsection is devoted to proving this result
(Theoremb.21below).

First we need to change from standard reduction to one which is finite-branching. With
ambient movement it is problematic to use labelled transition systems (as did Busi and
Zavattaro). Therefore we go directly to a finite-branching notion of reduction. We shall
define what we callinfolding reductiopwhich means that we unfold each recursion exactly
once for each reduction.

Looking at the rules for~ given in Sectior2, we see that the infinite branching comes
from the following two rules of structural congruence:

o|p=r rec X.P = P{rec X.P/X}.

The first allows indefinitely many nil processes to accumulate, while the second allows
us to unfold recursions indefinitely many times, even for a single reduction. We therefore
remove these rules from structural congruence, and use commutative-associative structural
congruence=., (Section2). Notice that this is exactly what we used in Secttbawhen
proving thatL, is terminating. In fact, the non-standard notion of reduction we defined
there is finitely branching, though we did not require that for the proof.
Next we define a non-standard notion of reductieq, for LS. This has the same rules
as normal reduction, with two changes:
(1) Much as when we defined a non-standard reduction in Seti#we include variants
of the rules (SafeOpen), (SafeOut) and (Push) which allow for the possible absence
of processes in parallel with capabilities. This is unnecessary with standard reduction
where the lawd | P = P is available.
(2) We replace= by =, in rule (Str):

P=wP P -4 Q Q=40
P —c Q '

Since we have removed the rule of structural congruence which allows unfolding of re-
cursions, before performing a reduction we unfold each recursion exactly once, producing
what we call thaunfoldingof a process.

Definition 5.8. The (single)unfoldingunf(P) of an LoP termP is defined as follows:

unf(rec X.P) & unf(P){rec X.P/X],

with unf(P) being defined homomorphically for all other operatorg.gf.
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As an example, let

P outn(X|recy.0) o0 x|vnll

Thenunf(rec X.P) = outn.(rec X.P | (rec X.P | recY.Q | n[ ])).

The unfolding of a process allows every possible immediate reduction to go ahead. The
fact that a single unfolding is enough depends on the particular operato$8.df we were
dealing within, then for instancesc X.(X | m[in m ]) needs to be unfolded twice to expose
the redex. The difference betweenandout is that anin-redex involves two operators of
the same kind (namely, ambients) at the same depth. Althoughtaredex involves two
ambients, they are at different levels (one being inside the other). Since recursion is unboxed,
if an out-redex is exposed by a second unfolding, it (or an essentially identical redex) must
have been exposed by the first unfolding.

Definition 5.9 (Unfolding Reduction P —, Q iff unf(P) —., O.

We must show that>, is finite-branching, and that a process has an infiniteomput-
ation iff it has an infinite—~,-computation. First we prove some lemmas. It is convenient
to split structural congruence into two component notions:

Definition 5.10. (1) Let=,, be the least congruence @3 terms generated by the fol-
lowing laws:

O|PEncaP P|l|O=pa Q| P (Pl Q)| R=pca PI(Q|R).
(2) Letr> be the least precongruence b terms generated by

rec X.P>> P{rec X.P/X}.

Thus=,,, is =., with the law for the nil process added. We geby treating the law
recX.P = P{recX.P/X}asarewrite rule. Any derivation df = Q is a chain of instances
of =,., and> and its inversed.

Lemma 5.11. Let P, O, R, S be LoP terms aml X a pocess variable.
(1) If P =pea Q aNdR =pcq S thenP{R/ X} =pea O1S/X).
(2) If P>0 and R>S thenP{R/ X}>Q{S/ X}

Proof. Straightforward and omitted. ]
Lemma 5.12. Let P be anLgP term. ThenPr>unf(P).

Proof. By structural induction on terms. All cases are immediate except for recursion. So
suppose thaPr>unf(P). We must show thatec X.Pr>unf(rec X.P). Now rec X.P>P
{rec X.P/X} and

unf(rec X.P) = unf(P){rec X.P/X}.

So the result follows from Lemma 1l O
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Lemma 5.13. Let P, Q be LoP terms.
(1) If P =04 O thenunf(P) =, unf(Q).
(2) If P>Q thenunf(P)>unf(Q).

Proof.

(1) Structural induction on terms for each of the three lawsf,, using Lemméb.11

(2) By induction on the derivation oPr>Q. The only case which is not immediate is
recursion. Suppose th&t= rec X. P’ and P> Q is got by a single unfolding. There are
two possibilities forQ. EitherQ is got by unfolding the outermost recursion, or it is got
by unfolding some recursion insid¥. In the first case we haw@ = P’/{P/X}. Then
unf(P) = unf(P){P/X} andunf(Q) = unf(P){unf(P)/X}. Sounf(P)>unf(Q)
by Lemmab.11 In the second case we ha@ = rec X.Q’ with P’'t>Q’ in one
step. Thenunf(Q) = unf(Q’){Q/X}. By inductive hypothesisinf(P’)r>unf(Q’), and
unf(P)>unf(Q) by Lemmab.11 O

Lemma 5.14. Let P, Q be LoP processes
(1) If P =pca—>ca QthenP — i=pcq Q.
2) If P<4—¢, O thenP —,<0.

) If P>—, O thenP —,= Q.

@) If P=—, OthenP —,= Q.

B) P— Qiff P—,= Q.

Proof.

(1) Straightforward and omitted.

(2) Suppose thaP <P’ in a single step. Then there is a conté&s} such thatP’ =
C{rec X.R} andP = C{R{rec X.R/X}}. SupposeP’ —., Q. ThenQ = C'{rec X.R}
for someC’{e}. FurthermoreP —., Q' where Q' = C'{R{rec X.R/X}}. Clearly
Q’'<10 as required.

(3) Notice that the converse of (2) does not hold: it is not the case tifatif>., Q then
P —.,>Q, since in general unfolding recursions can create new redexes.

The idea is that if a recursion has already been unfolded once, unfolding a second
time does not give any new redexes.

Suppose thaPr>P’ in a single step andnf(P’) —., Q. Then there is a context
C{e} such thatP = C{R}, with R = rec X.Ry, andP’ = C{R’}, with R’ = R1{R/X}.

Now unf(C{R}) = or(C'{unf(R)}) for some context’{e}, Wheresy assigns re-
cursive terms to any variables bound by recursiog{®}. Also unf(C{R’}) = op
(C’{unf(R")}), where we havesgz(Y)>ox (Y) for any variables bound by recursion
in C{e}.

As a simple example, |&t{e} df recY.(Y | o). Thenunf(C{R}) = or(Y | unf(R)),
whereog (Y) = C{R}, andunf(C{R'}) = o/ (Y | unf(R")), whereor (Y) = C{R'}.

We haveunf(R1) =., X' | Ra | Rc | Ry | Rn, Wherei >0, R, is the parallel
composition of ambient terms. is the parallel composition of capability terms of
the formM.P, R, is the parallel composition of recursive terms, d@lis the parallel
composition of nil processes. To be precise, any or alRof R., Ry, R, may be
absent fromunf(R1). Note thatX does not occur free iR, , since recursion is unboxed.
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Hence:

unf(R) = unf(R1){R/X}
ca R | Ra | R{R/X} | Re{R/X} | Rn,
unf(R1{R/X})
unf(R1){unf(R)/ X}
ca (unf(R)" | Ra | Re{unf(R)/X} | R{unf(R)/X} | Rn.

unf(R’)

Notice that inunf(R’) there are now + 1 copies ofR,. Also there are copies of
R{R/X}.

Now we look at how the reductiomnf(P’) = o g (C’'{unf(R)}) —., QO can arise.
Inspection of the redexes fopen, out and push shows that withirunf(R’") at most

one ambient and one capability can be involved. Also the only possible movement is

of an ambient term, which does not involvef(R). The subtlety is that the capability
involved may come from eithe®{R/ X} or Rc{unf(R)/X}. Working up to=, we can

assume that the ambient term used is the rightmost one. Also, if the capability term

used is aR-{R/ X}, we can replace it byR.{unf(R)/ X} and get a result equivalent
under=, using the fact thaR = unf(R) by Lemma5.12 Hence

unf(P’) =4 op/(C"{unf(R)}) = 0,
for some contex€”{e}. This reduction can be mimicked by
unf(P) —¢q ar(C"{R}).
Now g (C"{unf(R)}) = og(C"{R}). HenceP —,= Q as required.
(4) Follows from (1), (2) and (3), using Lemn&al3
(5) (=) By induction on the derivation aP — Q, using (4).
(<) Suppose®? —,= Q. Thenby Lemm&.12andthe definitionof>,,, Pr>— .= Q.
HenceP — Q. O

Lemma 5.15. Let P be an.3” process. Then P has an infinite-computation iff P has an
infinite —,-computation.

Proof. (=) Much the same as Lemndall, using Lemméb.14
(«) If there is an infinite—~,-computation? —, P —, --- ,thenP — P; — ---isan
infinite —-computation, by Lemm&.145). O

Lemma 5.16. (1) For any LoP term P {Q : P =, O} is finite.
(2) —, is finite-branchingand Succ(P) is computable in P

Proof. By structural induction on processes. Omitted]

Now we follow Busi and Zavattaro and define an orderngn processes, which will be
awqo:
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Definition 5.17 (cf. Busi and Zavattarg8, Definition 4.17). Let P, Q be L3 processes.
Let P<Q iff

(1) Q =, P | R for someR, or

(2) P=cy PrIn[P2landQ =., Q1| n[ Q2], with 1< Q1 and P2< Q.

Definition 5.18. Theambient nesting depif an L3” term is defined as follows:

and(©0) & 0 and(M.P) & and(p)
and@[P]) & 14 and(P) and(x) ¥ o
and(P | 0) & maxand(P), and(Q)) and(rec X.P) & and(P)

Reductions do not increase depth:

Lemma 5.19. (1) Let P, Q be LgP terms. If P = Q thenand(P) = and(Q).
(2) Let P, O be LoP processes. IP —,, O thenand(P) >and(Q).

Proof. Straightforward and omitted. Note that the proof depends on recursion being un-
boxed. O

Proposition 5.20. Let P be an.3” process. TheDeriv(P), —,, <) is a well-structured
transition system with decidable and computabl&ucc(-).

Proof. (Sketch) We show thax is a decidable wgo oberiv(P) (using Lemmab.19
which gives us the Bounded Depth property), and that it is upwards compatible-with
We omit the details, referring the reader to the prodiBpfTheorem 4.29]We know from
Lemmab.16thatSucc(—) is computable. [

We can now prove the main theorem of this subsection:
Theorem 5.21. Termination is decidable fako".

Proof. Termination of —,-computations is decidable fak? by Theorem5.7 and
Proposition5.2Q Therefore by Lemm&.15termination of—-computations is decidable
for LSP. O

Remark 5.22. We know that termination is undecidable fak;, (see proof of
Theorem3.10. It follows from Theorenb.21that there can be no embeddifig] from
L, into L3P which respects termination, in the sense that for any praee$d.i,, P has a
non-terminating computation iff ] has a non-terminating computation.

5.2. Decidability forin
We now turn to showing that termination is decidable for a language wiilh trepability

and full replication (rather than replication on capabilities, as considered in Sditidfe
start by noting that even such a simple process$dsn n ] can have a computation with
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unbounded ambient nesting depth. The proof method of Theér@tis therefore not
available.
Let L;, be the following language:

P:=0|n[Pl|P|Q|innP|'P

We shall show that termination is decidable fgf (Theoremb.34below). Our strategy is
first to remove all replications except those on capabilities and ambients. Next we define a
non-standard notion of reduction which detects any possible divergence and terminates the
computation immediately.

Let L; be the following language:

P:=0|n[P]| P|Q |innP |!n[P]]|!innP.

We see that; is the sublanguage df;, got by requiring that replication can only be
applied to ambients and. Note that ifP is a process of.; andP — Q thenQis also a
process of; .

Define an encodinfj—] from L;, to L; homomorphically except for replication, where
we let

rrop Lo e on 2 eriron 1 er E ey
Cal P E 1agry1 1tine.P1 & tinngry.

We next define a non-standard notion of structural congruericen L;,. It is the least
congruence generated by the usual laws of standard structural congruence appropriate for
the operators of.;, (Section2), together with the following:

10='0 1tp=tip (PlOQ)="1P|!0O.
These laws are to be found in for instaritéd].
Lemma 5.23. For any L;, process PP =' [P]).
Proof. By structural induction ori;, processes. Omitted.[]
Lemma 5.24. For any L;, processe®, Q,if P ='— Q thenP —=' Q.

Proof. By induction on the derivation cE'. Omitted. O

Lemma 5.25. Let P be anL;, process. Then P has an infinite computatioff #f]] has an
infinite computation.

Proof. Follows immediately from Lemmas.23and5.24 [
To decide whether a proceBsof L;  has a non-terminating computation, we shall de-

fine a non-standard reduction relatien? which is finite-branching and which traps non-
termination finitely, so that every computation terminates.
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As in Section5.], in order to achieve finite branching we use commutative-associative
structural congruences, instead of standard structural congruereeSince we omit
the rules for nil and replication we compensate with extra reduction rules, much as in
Sectiond.2 These ensure that replications are unfolded once as needed:

(In1) n[inm.P|Q]|m[R] —® m[n[P|Q]|R],

(In2) n[!'inm.P| Q]| m[R] =P m[n[P |!inm.P|Q]|R],

(In3) nlinm.P | Q1|'m[R]1 =P m[n[P| Q1| R]|!m[R],

(Ind) n[ linm.P | Q1'm[R]1 =P m[n[P |'inm.P| Q1| R]1|'m[R].

Also, because we cannot add in nil using structural congruence to match a redex, for each
of the above four rules there is another rule which is the same excef thabt composed
in parallel. We omit these rules.

D pr/ — / / D oy ’—
(Amb) P—-"P (stn) P=.,P P —-"Q0 Q0 =40
n[P]1—Pn[P'] P D
P —D p
(Par)

PlQ—>P PO

We introduce a new constabtVV which represents divergence, and which can occur only
on the right-hand side 6 ”. Thus— < L! x (L! U{DIV}). We add the following rules
which trap divergence caused by replicated ambients being able to perform rejpsated

(InDivl) !'n[inm.P | Q]| m[R] =P DIV,
(InDiv2) !'n[!inm.P | Q]| m[R] =P DIV,
(InDiv3) !nlinm.P | Q1|!m[R] =P DIV,
(InDiv4) !'n[ linm.P | Q1|!m[R] =P DIV,
(InDiv5) 'n[inn.P | Q] =P DIV,
(InDiv6) 'n[linn.P| Q] —P DIV.

As previously, there are another six rules like the above but @ithissing. Another form
of divergence associated with replicated ambients is trapped by the next rule:

(AmbDiv) PP P
1n[P]—>P DIV’
Finally we add four rules to propagate derivation®d¥:
PP DIV P —P DIV
DivAmb) —— — " (DivR _P-PDIV
(OvAmD) e =opiv OVREP) o
(DivPar) P P DIV (DivStr) P=,P P —Dplv
P|Q—P DIV Y

Notice thatDIV has no reductions. We complete the definition-ef by stipulating that
DIV takes priority over any derivative if; :

o If P >P DIVthenP AP Qforall Q € L] .

We need this condition, because otherwise we could have infinflecomputations, which

we wish to avoid. An example i® d ml[inm] ['m[in m]. We haveP —P? DIV, but
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without the priority condition we would also have the infinite computaftor>© m[m[ ] |
inm]|!'m[inm]—=P ...

Lemma 5.26. (L, — D) is finite-branching anggiven P L: , we can effectively com-
pute its successors undes .

Proof. Straightforward and omitted. ]

The constanDIV represents the finite detection of divergence. We see from the various
rules forDIV that the possible causes of divergence are all very simple. What is not so
obvious is that the rules have indeed trapped all possible causes of divergence; there might
be deeper or more elaborate causes. To rule this out, we shall need to sdmnthatD) is
terminating, and this is where the main work will lie in proving that termination is decidable
for L;,.

First we establish the relationship betweenand— 2:

Lemma 5.27. Let P, Q be L; processes

(1) If P -P QthenP — Q.

(2) If P -P DIVthenP —©.

(3) If P=—P DIVthenP —P? DIV.

@) If P=—=P QthenP -P= Q.

(5) If P — Q then eitherP —P= Q or P —P DIV.

Proof.

(1) Straightforward and omitted.

(2) Any reductionP —” DIV must arise from one of the twelve (InDiv) rules, or from
(AmbDiv). In each case it is easy to construct an infiritecomputation.

(3) By induction on the derivation et. The idea is that the derivation bilV is unaffected
by whether replications are folded or unfolded, since the various ruldslimork
directly on replicated processes. We omit the details.

(4) By induction on the derivation a&. Much as in the previous item, there is no need
to unfold replications in order to obtain reductions, since we have rules (In2)-(In4) as
well as the standard (In1). We omit the details.

(5) By induction on the derivation a? — @, using (3) and (4). O

Having obtained the desired finite-branching transition systefh) we now complete the
proof that termination fo(L; , —) is decidable by showing that! . — D) is terminating.
We adapt Method 2 for showing tha%” is terminating (Sectiod.1).

As in Sectiord.], let us writeP —>tDop Q for a top-level reduction (one that does not use
the rule (Amb)) andP _)Igwer Q for a lower-level reduction (one that does use (Amb)).
We do not make this distinction fa? —? DIV reductions. The next lemma is similar to
Lemma4.6.

Lemma 5.28. Let P, Q be L] processes. IP =0 . —@, OthenP -2 =D . 0.
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Proof. Straightforward and omitted.]

Lemma 5.29. (L!

n’

—{op) is terminating.

Proof. Take anyL; process. We have

P = PP T[] mil Q11 I] !'n;[R;11 [T O,

iel jeJ keK

where PP is the capability component ¢ (see Sectiord.1). Any —>tDop computation
starting fromP will be finite; in fact, it can have no more th&h reductions. This is because
eachmn;[ Q; ] can perform at most one top-levej also at no stage in the computation can we
have any top-level reduction where an ambient spun-off from sbmeR; ] enters another
ambient (as this would imply — 2 DIV, which would prevent any»t%p reductions). O

As in Sectiord.1, let us writeP \, Q if P = m[ Q1| R for someR. The next lemma is
similar to Lemma4.7.

Lemma 5.30. Let P be anL; process. Suppose that P has an infinite computation
P(=P)®. ThenP =\ (=?)°.

Proof. The proof is on the lines of that of Lemn#a7. SupposeP (— ). By Lemma
5.29the computation? (—2)® will have finitely many—>tDop reductions. Using Lemma

5.28we can transforn® (— 2)® into another infinite computation with a#@p reductions

carried out at the beginning? :>{3p P’(—>|’gwer)w. Then P’ must have at least one top-
level (unreplicated) ambient, and there must be an infinite computation inside one of these
top-level ambients[ P”]. SoP :>tD0p P’ N\  P"(—P)® as required. O

Recall that in Sectiod.1 we defined thecapability degreeof an ambient. We need to
adapt that definition to the present langudge where we have replicated ambients. First
we define theapability and replicated ambient deptifia process:

crad(0) 4o crad(inn.P) dt crad(P)+1
cradin[P1) & crad(p) crad(!n[P]) & crad(P) + 1
crad(P | 0) & maxcrad(P), crad(Q)) crad(linn.P) & crad(P) + 1.

Note that this definition increases depth for capabilities and replicated ambients. Next we
define thedegreeof an ambient or replicated ambient:

degree([ P 1) L crad(P©P)  degree(!n[ P 1) & crad(1n[ P ).

The idea is that the degree of an ambient is unaffected by other ambients entering. Also,
if an ambient unleashes “child” ambients or replicated ambients inside itself as a result of
entering another ambient, such children will have lower degree. Moreover, if a replicated
ambient ! n[ P ] spins offn[ P] thenn[ P ] and all unguarded ambients and replicated
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ambients inside:[ P ] will have lower degree tharin[ P ]. Note that the degree of an
ambient can decrease as a result of that ambient performiimg an

Lemma 5.31. (L , —P) is terminating

Proof. Let P be anL; process. From Lemm&a.3Q we see that iP has an infinite—
computation therP has an infinite=>{3p\ computation. To show that infinit&»{gp\
computations are impossible, we assign multisets to processes and define an ordering on
these multisets which is well-founded and strictly decreasing with respes .
As when using Method 2 to show thlaﬁ‘ is terminating, for a completely formal proof
we would have to develop an apparatus for labelling ambients and members of multisets
in order to make precise the correspondence between the two. We would also have to keep
track of which ambients are spun off from which occurrences of replicated ambients. Again
we have suppressed all of this in the interests of readability.
LetPy,..., P;,...bean infinit%t{’,p\ computation (i.eP; —>{2,p P 100 P N\ Piy1,
and there are infinitely manyfor which P; N\, P;+1). We assign to each; a finite multiset
S;. Its elements will be ordered paitg, T) consisting of a natural numbdrand a finite
multisetT of natural numbers. Let us say that an ambient (or replicated ambielfR) is
guardedif it occurs inside the scope of an (or !in), or inside a replicated ambient. The
negation of IR-guarded iR-unguardedThe multisetS; will satisfy the following:
(1) Foreachd, T) € S;, and for eacll’ € T we haved’ <d.
(2) Thenumbersis; are precisely all degrees of IR-unguarded ambients and IR-unguarded
replicated ambients i®;: there is a bijective correspondence which
(a) maps each IR-unguarded ambietQ | of P; to d >degree(m[ Q]) in S;, and
(b) maps each IR-unguarded replicated ambiedmt[ Q] of P; to number
d = degree(!m[ Q])in S;,
either as the left-hand component of so@eT) € S; or as somal € T where
d,T) € S;.
(3) (@) If m[ Q] occurs at the top level i?;, andm[ Q ] was not spun off from some
top-level replicated ambient, then Q ] corresponds td in some(d, T) in S;.
(b) If !'m[ Q] occurs at the top level iw®;, then !m[ Q] corresponds ta in some
d,T)inS;.
(4) Ifm[ R](resp.!m[ R]) corresponds td’ € T for some(d, T) in S;, thenm[ R ] (resp.
!m[ R1])is IR-unguarded inside somg Q ] corresponding td, or elsed corresponds
to a top-level IR-unguarded replicated ambient.
We createSy as follows: For each IR-unguarded ambieifitQ ] of degreed contained inPg,
we add the ordered paid, ¢) to Sp. Similarly, for each IR-unguarded replicated ambient
!'m[ Q] of degreed contained inPy, we add the ordered pdid, ¥) to Sp. Plainly properties
(1—4) are established.
In the computation there are two kinds of reductionsgp andy\. Suppose thak; —>t%p

P; ;1. There are two kinds of—>t’g reduction:
e Anambientni[ Q1 ] of degreei; enters an ambiemis[ Q> ], using rules (In1) or (In2).
e An ambientn[ Q1 ] of degreed; enters an ambiemt2[ Q2 | spun off from ! ma[ Q2]

of degreeds, using rules (In3) or (In4).
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In both cases, by (3)z1[ Q1] corresponds td; in (dj, T1), with d1 <d;. The reduction
may produce children withim1[ Q1 ], and we add their degrees (which are less thgn
to T1. In the second case, by (3)m2[ Q2] corresponds tady in (d2, T2). We have new
IR-unguarded ambients and replicated ambients produced by spinning[aff, ]; we add
their degrees (which are less th&i) to 7». In this way we creatd; 1. It is easy to check
that properties (1-4) are established $or;.

Now suppose tha?; ~\, P;11. The reduction selects a top-level ambienf P; 1 ],
and keepg’; 1 while discarding its enclosing ambient and any other top-level processes in
parallel withm[ P;11]. To createS; 1, first we remove each top-level replicated ambient,
and remove frons; the correspondingd, T), replacing it by(d’, @) for eachd’ € T. Call
this new setS;. Suppose thai:[ P;;1] is of degreedp. By (3a) and the construction it
corresponds to an eleme(ak), 7o) of S;. Secondly we remove all other top-level ambients
together with their contents. We remove the corresponding entrig/s hote that by (3),
(4) and the construction, if any member of sofdeT) is to be removed, then so are all
the remaining members. Thirdly we remo®, To) from S/, and for eachl € Tp we add
(d, ¥) to S;. Note that eacll < do < d;. Only this third stage is guaranteed to take us down
in the multiset ordering. In this way we credg 1.

Properties (1), (2) and (4) are clearly established Sar;. As to (3), suppose that
(!)m[ R]is atop-level ambient or replicated ambientfn 1 which corresponds t@’ € T
for some(d, T) in S;11. Then this(d, T) was already inS;. Therefore by (4) fors;
and the construction of;;1, (!)m[R] was inside somen[ Q] corresponding tad.
The only way thai(! )m[ R ] can be top-level inP; 1 is for m[ Q ] to bem[ P;;1], which
means that(!)m[ R] corresponds tod’ in some (d’,%) in S;;11. Thus we have
established (3).

Recall the well-founded ordering on multisets of Definité2 and Propositior.3. If
we consider just the first members of the pairs in the multiSgtsve see that a—>{gp
reduction leaves the set unchanged, whilg eeduction removes one element and replaces
it with a finite set of smaller elements (it also removes zero or more elements completely,
corresponding to the discarded top-level processes). So:e#d\ reduction takes us

down in the> ordering. By well-foundedness efthere is no infinite:>£p\ computation,
and thus no infinite>? computation. O

Lemma 5.32. Let P be anL; process. Then P has an infinite -computation iffP =D
DIV.

Proof. (=) SupposeP = Py — --- — P; — --.is an infinite computation. Assume
for a contradiction that it is not the case that=" DIV. We shall construct by induction
an infinite— ”-computation, which contradicts LemrBa31 Let P, = Po. Suppose that
we haveP, D ... D P/ with PJ/. = p; for all j<i. SinceP/ = P; — P;;1, we
have P/ — P;11, and by Lemméb.275) there existsP/, ; such thatP/ —D P/, and
P/ | = Piy1, Sincep/ —D DIV is impossible by assumption.

1

(<) SupposeP =P DIV. ThenP —® by Lemma5.271,2). O

Lemma 5.33. Termination is decidable foiL; , —).
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Proof. To decide whethd? has an infinite computation, by Lemra82we need only check
whetherP =2 DIV. We do this by computing the entire computation tre® ahder—
(of course, we can stop if and wh&iV is encountered). This is possible by Lemrba26
and5.31 O

We can now state our main theorem:
Theorem 5.34. Termination is decidable fok;,.
Proof. By Lemmass.25and5.33 [

Remark 5.35. Itis an open question whether termination is decidable whgrs extended

with safein as in SA. The proof method used for TheorBr@4appears not to work, since

it relies on defining a non-standard reduction relation which is terminating. The difficulty
is to find such a relation for which there can be no infinite top-level computation (as shown
for (L! —>tDop) in Lemmab.29. Here is an example to show the extra complications that

n’

arise with SA:
mlinm1]|!mi[inmyinma]|!ma[inmoinm3z] | --- | !mg[in mg.in mq ).

Herem[in m1 ] acts as a catalyst to set in motion a cycl&kadp-level reductions, which
can repeat without end. This divergence can only be detected by consideratiok ofAll
processes.

5.3. Decidability forpull
Let L, be the following language:
P:=0|n[P]| P|Q | pullnpP|!P.
Theorem 5.36. Termination is decidable fok .

In proving the theorem we follow the same strategy as for The&.8¢ We first change
from L, with full replication toL;)uII with replication just orpull and ambients. Next we

define a non-standard reduction relatier which traps divergence finitely. We then show

that(L;u”, — D) is terminating, which gives us a decision procedure. As the development

is very similar to that of Sectiof.2, we omit most details and just mention a few points.
The rules for—? are as in Sectiob.2, except that we replace rules (In1)—(In4) by five

variants of (Pull), and (InDiv1)-(InDiv6) by:

(PullDivl) n['pullm.P | Q1|!m[R] —P DIV,
(PullDiv2) !'n[pullm.P | Q]1|!m[R] =P DIV,
(PullDiv3) !'n[ !'pullm.P | Q1|!'m[R] =P DIV,
(PullDiv4) 'n[pulln.P | Q] =P DIV,
(PullDiv5) 'n[ 'pulln.P | Q1 —P DIV.
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Matters proceed as in Secti@2 until we reach the analogue of Lemrba&29, which is
proved rather differently:

Lemma 5.37. (L7, ;. —>tDop) is terminating

Proof. Take Py in L’pu”, and suppose that there is an infinite computaﬂ@n»t%p e —>tD0p

P; —>{3p ---. Then either (i) at least one top-level ambient performs infinitely many pulls,
or (ii) at least one top-level replicated ambient performs infinitely many pulls.

If a single ambient performs infinitely many pulls, it can only do so because of a replicated
capability ! pull n. Also, Pp must have a top-leveln[ Q ]. Suppose that pull n is first
enabled inP;. Then we have?, —? DIV by (PullDiv1), and saP; 7L>tD0p.

Suppose that a single replicated ambient, say P ], performs infinitely many pulls.
There must be some nammefor which !m[ P ] performspull n infinitely often. But
this is only possible ifPy has a top-level n[ Q ] (which may of course be the same as
!m[ P]). This means thaPp —” DIV, using one of rules (PullDiv2)-(PullDiv5). Hence

Py 7L)t?)p' O

As far as the analogue of Lemrba31is concerned, the proof is much the same, though
we note that there is a difference when it comes to analysir&) reductions. With;_, a
spun-off ambient could not perform & and hence could not have children. By contrast,

with L;)u” spun-off ambients can pull in other ambients, and so can have children. If the

spun-off ambient correspondsdb e T, where(d, T) € S;, we can add the degrees of its
children toT, since we know that they are less th#in< d.

6. Conclusions and future work

The main contribution of this paper is to show that tipen capability is not needed
to obtain Turing completeness for pure Ambient Calculi. This implies that pure Boxed
Ambients is Turing-complete.

We have sought to establish the minimality of the languag®y showing that removing
eitherin or out capabilities leads to a failure of Turing completeness in a rather dramatic
fashion: every computation terminates.

A language very likeL;, is studied in[22]. There it is shown that this language admits
symmetric electoral systems, and also that any fragment of MA with this property must
possess botin andout capabilities. It follows that there can be no encoding satisfying
certain conditions of reasonableness frbinto any fragment of MA not including both
in andout capabilities.

We summarise our main contributions to understanding the computational strength of MA
dialects in Fig 3. In the diagram we label each node with a language and with its strength.
The languages all have full replication (where not stated otherwise) and are identified by
the capabilities reported on the node. For examgben, in, out is pure public MA. A
similar diagram holds for the results on PAC, with one exception: the languagewsith
alone and replication just gsush is not terminating (see Sectidn?), and so has decidable
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open, in, out [8]

open, out, rec Thm.5.21

open, in |
//
/
/ open, out
inThm.5.34 -~
5 open \ out
¢ | o
l So l
. I A
in, M Thm.4.8 N ® out, M Thm.4.14
open, M
A Turing-Complete B Termination Decidable
@® Open Problem @ Terminating

IM = replication on caabilities

Fig. 3. Computational strength of some ambient calculi.

termination. In addition, a similar diagram holds for the results on SA, with two exceptions:

(1) the language withut, out alone and replication just asut, out is not terminating (see

Section4.2), and so has decidable termination; and (2) it is an open question whether the

language withn, in and full replication has decidable termination (see Rerba3K).
We briefly mention some open questions/future work:

e As far as the study of the computational strength of fragments of pure Ambient Calculi
is concerned, the major open question is the strength of the fragmenveitidopen
capabilities (but nobut). We conjecture that this fragment has decidable termination.

e We have seen that the language withas its only capability and replication (but not
restriction) has decidable termination (TheorBr84). It is an open question whether
this is also the case when replication is replaced by restriction.

e The presentwork leads us to ask what might be a set of minimal constructs of AC capable
of encoding regular expressions or context-free grammars.
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Appendix A. Encoding of CMs into L>P

10a

We present an encoding of CMs into the languad® defined in Sectio3.4
P:=0|n[P]| P|Q | openn.P. | inn.0 | outn.0 | lopenn.P

Theorem 3.9.L7" is Turing-complete.

Proof. The proof of Turing completeness follows the structure of that of The@8&m

Numerals contain movement capabilities to interact with the instruction for decre-
ment/jump, and each register contains a capability that will allow it to interact with both
instructions:

0% ifinjz]
k+1% sk inds]
[R; ()1 L rifinrj | k]

The encoding is completely deterministic, since at each step only one reduction is possible.
We define the encoding at ti stage of an arbitrary configuration GM:

[CMG ko, k)l S stl 11 [T LT | TT IR, ()l
i<a j<b

We now describe the encoding of the instructions. To increment a regjstee first make
it enter in a dummy copy of itself which, once it acknowledges the presence of the register,
moves into a skeleton containing the additional successor ambient to add. Once this dummy
rj isinsides, itis opened, the numeral is released inside thes)ewd an acknowledgement
ambientb is recognised both by the enclosing which creates its new capabilityr ;, and
successively (ambieig) by the environment which releases the incremented register in the
top level, along with the token for the continuatistn, ;.

i : Inc(pl &
lopenst;.(rjlopenr;.(inu |inr; |ins)]
| ulrijlopenb.inrj|s[inds|openr;.blouts|cloutr;|outu]]]]]
| open c.open u.stj+1[ ).

Notice thatthe encoding of. Inc(j) does notin fact depend on the stgpthe computation,
since there is no garbage (there will be garbage when we come to decrement/jump). The
encoding satisfies:

sti[ 110 : Inc(DTe | TR; ()T = stiyal 111 = Inc()Ti+a | IR (k + D).

The instruction for decrement/jump is complicated by the need to dispose of the jump
branch if a decrement is executed, or the decrement branch if the register contains 0.

[i : DecJump(j, i) df lopen st;.rj[openr;.(DS(G) | IZ(i) | F(@) | inrj)]
| CLR(, ds) | CLR(, j2)
| GRB(, ds jump(i, 1)) | GRBU, jz, dec(i, 1)).
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The strategy consists in opening the instruction trigge),(inviting the register inside a
dummy copy where itis opened and then having the numeral itself selecting eitbsXihe
or theJZ(i) term according to its value. The selected term must make sure that the other
one is disposed and proces§#R(i, ds), CLR(i, jz) make sure (interacting with (i)) that
all the garbage is collected, and trigger the appropriate continuation.

Below, x andy are complementary syntactic macros, such that4f jz in a term, then
y = ds(and vice versa).

DS() ¥ dg open s.DISPLG, jz) | indds | inb]
JZ(i) d jz[ open z.(DISP1(i, d9) | z[injz]) | indjz; | inb]
F@) df open a.open endopen djz;.open dds.open b
CLRG.x) £ 1opendx;.alinr; | DISPZ, y) ]
GRBi, ds n) & (5[ open s.DISPLi, j2) )"
GRBG,jz,n) T (b[open z.(DISPLG, d9) | z[injz]) ])"
DISPi, x) ¥ dx;[out y | b[open x.clout b]] | open c.out r; ]
DISP2i, x) & dx;[ bl open x.endout b | out dx; | dyi[ 111 STx) 1]
sTd9 L st; afoutr; ]
STi2) L styfoutr; ]

We follow step by step an example where decrement takes place. The case for jump is
almost symmetric. The initial state is

. Isti[ 111 : DecJump(j, il | [R;(k + DT | ... .
After the first three steps we reach

. Irjlslk|inds] | DSG) | IZG) | FG) [inr;]1]....
Now sentersds it is opened, andjz; exitsds

... |rjlddk |indds |inb]
| djz;[ b[openjz.c[outh]] |openc.outr;]|...]]...

Ambientjz entersdjz; andb, gets opened; leavesh, gets opened, antjz; leavesr;.
oo rldd . T F@) Linrj ]| djzi[blopenz.(...)]11| CLRG, j2) | ...

Now djz; is opened byCLR(,jz), a entersr; and gets opened by (i) releasing
DISPZi, ds) inr;.

...|r;[ds...]] openend(...) | inr; | DISP2i,d9 ] | GREG,jz, 1) | ...

Ambientdsnow entersi/ds andb, gets opened, and ambientdexits to the top level im;.

...|rjldds[b[k | STd9]] | openend(...) |inr; | end djz[ 11]]...
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Now endis opened, followed byljz;, thendds, and finallyb is opened, releasing the
continuation, which exits;. Assuming thatledi, /) = m, we have

o Istigil Trjlklinr; 11 GRBG, jz, 1) | GRBG, jz,m) | ...

By definition, we have thaBRB(, jz, 1) | GRB(, jz, m) = GRB(, jz, m + 1), and since a
decrement has been executkdt(i, / + 1) = m + 1, and we conclude with

oI stigi[ 11 - DecJump(j, &)l [ [IR; (T | - .. O

Appendix B. Encoding of CMs into L;,

We present an encoding of CMs into the languagedefined in Sectio3.5:

P:=0|n[P]| P|Q | innP |outnP |!innP |loutn.P.

Theorem 3.10.L;, is Turing-complete.

Proof. (See first the sketch in Secti@b.) We consider a particular CM calleZiM, with
instructionsly, ..., I, and registersRo, ..., Ry. Let CM (i : ko, ..., kp) represenCM
when it is about to execute instructioand storingc; in registerj (j <b). Let the (unique)
finite or infinite computation of M = CMgbeCMy, CMy, ..., CM;, ...,whereCM; =
CM(3y : ko, ..., kpp).

Each registerR; (j<b) is encoded as an; ambient enclosing a numeral procdss
encoding the stored natural numlbetet the instructiong; be numbered from 0 ta. The
outerr; ambient has the task of entering asty ambient (< a). The first registerRg is
additionally allowed to entest,. 1. This will allow Rg to be conveyed back up to the top
level to give the result of the computation.

In describing the encoding of the registers and instructions, we must take into account the
fact that both the increment and the decrement/jump instructions will accumulate garbage
each time they are used. We therefore parametrise our encoding by thé afdeg stage
we have reached in the computation. Let
e inc(i, ]) be the number of increments
e dedi, /) be the number of decrements
e deg (i, ]) be the number of decrements leaving the register contents non-zero
e dec (i, ) be the number of decrements leaving the register contents zero
jump(i, 1) be the number of jumps
performed by instructionduring the computation €M up to, but not including, stade
Clearly,dedi, ) = deqg (i, I) + dec (i, ).

[[Ro(k)ﬂl 7’0[@1 | Hi<a+l!in Stl‘]
IR = rjlk; I Tli<atinsti] (A<j<Dh).

Register 0 has special treatment to deal with finishing off the computation and
making the contents available to any further computation. The numeral processes are defined

li=[E=
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as follows:
0, X 2(12 | D, | (increq tin s.in £ ]G ]
1Z % vinsine
D; 9 1in dect.out dect.out 7.out dect

HerelZ helps with increment, anf, helps with decrement. Thacreqambients build up
as garbage inside; Qvith each increment.

k+1, £ 5[DS| D, | (DT | Dy | k1]
DS 9 in decs
pT ¥ in dect
Dy 9 ih decs.out decd.out s.out decs

The processes insideandt help with decrement.
It is convenient to have a monitor procédsn which checks that all the registers and
instructions have entered thg ambient to reach the current level.

Monﬂ m[niga lin Sti-Mi]

df . . . .
M; = in pg.out po.---in py.out p,.inrg.outrg. - --.inrp.out rp.m;[out m ]

Once the monitor has finished checking, it unleashes amhigand instructiori is free
to go ahead. Oncst; appears, the instructions and registers reach the next level in an
indeterminate order. However, once the monitor has finished its check, the computation
proceeds deterministically until executionlpfs complete (except for alimited concurrency
in the increment, noted below).

We now describe the encoding of the CM instructions. The process corresponding to
instruction; (i <a) is of the form

df . .
(L1 = pi |: (/];[ lin St,v) |[Vinm;.out m;.P; | Gili|,
i'<a

where P; carries out the instruction, which is either increment or test and decrement or
jump, andG; is the garbage which accumulates during the computation up tolstalge
processP; will first exit p; and then enter the appropriate register

Once the computation is complete, tg, 1 ambient convey®q back up to the top level
using the following process:

Fay1 d checkin rg.out rg.out st,+1] | in checkout check( l_[ lout st; > .

i<a

Thusst,1[ F,+1 ] first checks whetheRg has entered, and then moves up to the top level.
Thecheckambient is left behind as garbage. F&ta, thest; ambient does nothing further

once it has appeared at the current level; it is convenient to dE,fi%feO (i<a).
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Before giving the instruction and garbage procesdes;;; in detail, we complete the
encoding of the CM. We capture the way that the computation moves down successive
levels by the following contexts:

Co{e} g
Criafel L cysty[my[ 11 1),

wherei; is the instruction performed at thign stage. The overall encoding of the CM is:

[CMG ko, ... k)] &
Cifstil toutr.outs | Fi 1| Mon| (T <07 10) | (TT;<,0R;k)T)).

The encoding ofcM is [CM]| df [CMollo. The encoded CM will go through successive
stageq[CM;]);. We show that for each non-terminal stdggCM;1l; = [CM;4+1]l;+1, and
that [CM,]|; is guaranteed to readiCM;;1];+1. There are various cases according to
whether we are dealing with increment, decrement or jump.

The increment instruction: Inc(j) is carried out by an ambieirtcreqwhich leavey;
and then penetrates to the core of the registdinsidez). Thenst; ;1 is unleashed, and
leavesncreqandz The news[ [ ]]then leavest; 1. Nowzcan entesfollowed byt. We
need to check thathas reached the core. S 1 enterss, t and finallyz. Note that there
is limited concurrency at this point betweeanterings, t andst; 1 enterings, t. This does
not cause a problem, as there is synchronisation when entersz. Now the increment
is complete, andt; 1 makes its way back out af;. At this point the next instruction is
triggered.

p e
IST
IA

= increq out p;.inr;.(lins.int | inz.IST) ]
d st;11[ out increqout z.(s[out st;11.(DS | Dy | t[ DT | D; )] | TA)]

dt ins.int.inz.outz.(loutz.outs |outr;. Fii1).

Note thatincreq !in s.in ¢ ] is left as garbage at the core of the register ingidehere is

no garbage insidg;, and so we defin&; ao.
In order to implement the instructian: DecJump(}, i"), we must test for whether the
registerr; is zero or nonzero. This is done by the following process:

P;
0;
Os

test[out p;.inr;.(Q; | Os) ]
in z.out z.out r;.in p;.sty[ out testout p;.Fy |

(===

. . ,
ins.out s.outr;.in p;.P;.

Thetestambient enters;. If it detectsz it leaves the register, re-enteps and unleashes
instructioni’. The procestest Q, ] remains as garbage insige Otherwisgestdetectss,
leaves the register, re-entgrs and unleashes process, which performs the decrement
of the register before proceeding to instructios 1. The processest[ Q] remains as
garbage inside; .



S. Maffeis, I. Phillips / Theoretical Computer Science 330 (2005) 501-551 545
Decrement is performed in two stages: first strip off the outerm@sid then strip off.

df . . . .
P/ = decs[out test.out p;.inrj.(decs’[ins]|int.outr.outr;.in p;.P)].

To start with,decsgoes to the top level insidg. Suppose the register containg- 1,. The
portion of interest of the CM process is:

...rjldecs[decs'[ins]|int.(..)]|s[DS|D; | t[DT | Ds | k;11]...

Then the whole contents of the register enter ugi8gThendecs enterss, which activates
Dy, leading tat going to the top level inside;.

...rj[decs[int.(...)|s[decs/[]|Dt]] | t[ DT | k;11...

This is detected bylecs which exitsr;, entersp; and unleashe®,”. The first stage is
completed. The procestec$ s[ D; | dec$[ ]]] remains as garbage insige.

Now we must strip off the outermostto complete the decrement. The procedure is
roughly the same, witk andt swapped.

df

P! = decf out decsout p;.inr;j.(dect[int]| Q) | O))]

0, & in z.out z.P”

[0)8 9 in s.out s.P"

P g out rj.in p;.sti;1[ out dectout p;.(loutr.outs | Fiy1)].

The ambientectenters the register:
...rj[dec{dect[int]| Q; | Q. |t[DT | k;11]...
Now t entersdect anddect enterst:

...rj[decl O | Qé|t[decf[]|kl]]]...

The numerak; usesD; to exitt anddect

...rj[decl Q} | Q. |t[dect[ 111 ]k;]...

The end of the decrement is signalled dty, 1 appearing at the level g; andr;. De-
pending on whether the decremented register is zero or non-zero, we haveledher, |
t[dect[ ]]1] ordec{ Q/ | t[dect[ ]]] as extra garbage insige. We therefore defin€;;
to be

(tes{ Q; IMMPED) | (test Q. ] | decs s[ D; | decs] 111)4ecCD |
(dec{ Q. | t[dect[ 119D | (dect Q) | t[ dect[ ]]])dec:CD.

It can be verified that all garbage can take no further part in the computation.

At the end of the computation (if it terminates3ta 1 ambient is unleashed (recall that
the last valid instruction number &. This ambient then appears at the top level containing
Ro. Thus the CM terminates iffCM]] | st,+1. This establishes that the weak barb relation
is undecidable, and that having a non-terminating computation is undecidable.
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To fulfil Criterion 3.1 we must ensure thakg is able to be used as input by further
computations. The problem is that the encoding of the register makes explicit use of the
list of instructions in order to allow it to entet; (i <a + 1). We resolve this problem by
starting any subsequent computation by first transferRgnito a new first register which
is suited to the new instruction list. This can be done by three CM instructions, as follows.

Letthe new CM be& M’. With appropriate renumbering, its program proper uses registers
numbered 12, ...5" (with the result being placed in register 1) and its instructions are
numbered: + 1, ...,d’, witha + 1, a + 2, a + 3 copying the contents of register 0 into
register 1, and + 4 being the index of the first true instruction@M’. We also assume a
registerR, 11 with contents set to O (this is used in instructin ).

a+1:DecJump(0,a +4)
a—+2:1Inc(1)

a+ 3:DecJump(® +1,a+ 1)
a + 4 : Start of CM' propet

We adjust the definition oRg in CM so that it can take part in instructiorg, 1, 7,12 and
lg43:

[Ro() T L ro [ kI TI linst } .

i<a+3

We define the monitor procesfon of C M’ in such a way that the ol&g is not expected
to travel beyond instruction + 3; we omit the details.

Strictly speaking, we should have taken all this into account in our definitions of the
encoding, but it seemed clearer not to do this.

One can adapt the above encoding to ensure that there are no continuations after the “out”
capabilities. An essential difference is that it is not clear how to adapt the monitor process,
which is therefore dispensed with. Thus there will be concurrency, in that the registers
and instructions will make their way downwards at different rates, but this does not lead
to any erroneous computations. Similar considerations apply to the increment: the process
has to be changed to a more non-deterministic one, though again without any erroneous
computations. [J

Appendix C. Encoding of CMs into Lpp

We present an encoding of CMs into the languéagg defined in SectioB.5:

P:=0|n[P]| P|Q | pushn.P | pulln.P | !'pushn.P | 'pulln.P.

Theorem 3.13.L,,, is Turing-complete.

Proof. We consider a particular CM callgdM, with instructionsl, .. ., I, and registers
Ro,...,Rp. LetCM (i : ko, ..., kp) represenCM when it is about to execute instruction
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i and storingk; in registerj (j <b). Let the (unique) finite or infinite computation of
CM =CMobeCMy,...,CM;,...,whereCM; = CM(i : ko, ..., kpp).

We shall describe how registers are encoded, followed by the same for instructions. Then
we shall describe how the encoded CM operates in detail. In describing the encoding of the
registers and instructions, we must take into account the fact that both the increment and the
decrement/jump instructions will accumulate garbage each time they are used. We therefore
parametrise our encoding by the indexf the stage we have reached in the computation.
Let
e inc(i, ]) be the number of increments
e deg (i, /) be the number of decrements leaving the register contents non-zero
e dec (i, 1) be the number of decrements leaving the register contents zero
e jump(i, ) be the number of jumps
performed by instructionduring the computation d&€M up to, but not including, stade

Zero and successor registers with their contents are encoded as follows:

[R; (O df zjl (increg;[ 1)@ | L pull increg;.
(pushs; | s;[SZ; | SD; | 1; 1 t;ITZ; | TD; | 1;1])]
[R;k+ DI i silSDj 1 1; | t;[TDj | I | [R; (k)i 1]
Thus incrementing a register by 1 involves adding two new surrounding ambiemfs
These will actually be added to the core of the register process, immediately round the central

z; ambient, when a request is received {jacreq; ambient is detected). The auxiliary
ambients are introduced to help in handling decrements.

df ,
= pull z;.push incack;,

SZ; =
o pull z;.(push incack; | incack[ ).

TZ,

Thel; process pulléncreq; | ] inwards towards the core, and pushes the acknowledgement
incack;[ ] out towards the top level:

I; & pull increq;.push incack;.
TheSD; andT D; processes help in decrementing a non-zero register:

sp, &

TD;
TDS]'
TDZ;

= pull u;.push ¢;

& pull decreq; (TDS; | TDZ,))

a push s;.(push decack | decack[ 1)
a push z;.(push decack | decack[ 1).

We now turnto the instructions. Tl instruction is activated whersg [ ] ambient appears
at the top level.
(1) Increment. The encoded instructiph: Inc(j)]; is

pil !pull st;.(increq;[ ] | push increqj.pull incack;.(push st; 11 | sti+1[ 1)

| (GI;;)inetD ]

whereG[;; a st;[ 1] incack;[ ]isthe garbage which accumulates with eachincrement.
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(2) Testand decrement or jump.: DecJump(j, i)]; is

pil !pul! st,-.(push test| tes1[Test;- | Tests |) |!FZ]»,-/ [ FS;;
| (GIiMMED | (GDSij) e | (GDZij)Pee D],

where

Testz & ol z;j.push z;.(push tested| tested Testedz ])
Testg o pull s;.push s;.(push tested| tested Testeds])
Testedz o pull test(push donez | donez;[ 1)
Testeds el
FZj;
F'S;j
FD;;
DR; L ;[ 1] pulls;.push ;.

= pull test(push dones | doneg| )

df pull donez .pull tested(push st;/ | st;[ 1)

df pull dones.pull tested(FD;; | decreq;[ DR; 1)

df push decreg.pull decack.pull 7;.(push st; 41 | stial 1)
d

Garbage can accumulate in three different ways, depending on whether the register
contents are zero (giving a jump), or non-zero (giving a decrement where the new
contents may be either zero or a successor):

GJij d st;[ ]| donez[ | | tested tes{ Tests | |

GDZ;; = st;[ ]| dones| | | tested tes{ Testz | |
| decack[ ]| t;[decreq[s;[u;[1]11;111TDS; | I;]

st;[ 1| dones[ ]| tested tes{ Testz ]
| decack( ] | tj[decreq[sj[uj[] [ 1;111 TDZ; | I; 1.

(1=

k=3

GDS;

We define:

[CMG ko, ... k)t Zstil ] ‘( [[Ii]]l)’ ( Il [[Rj(kj)]]l).
i<a j<b

The encoding ofcM is [CM]| d [CMpllo. The encoded CM will go through successive
stageq[CM;]);. We show that for each non-terminal stdgCM;]; = [CM;;11;+1, and
that [CM;]|; is guaranteed to readfiCM;;1];+1. Computation is entirely deterministic.
There are various cases, depending on the kind of instruction.

First consider the execution §f : Inc(j)];. Starting from

stil 111 < Inc(DT [ TR ()i,

the instruction is activated (ambiepf), and theincreg;[ ] ambient is pushed to the top
level:

[i : Inc(HT | pilsti[ 1] pullincack:.(...)|...7] increqj[ 11IR; ().
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Then theincreg; [ ] ambient is pulled into the core of the register process, where it is added
to the accumulated garbage. This leads te ammbient being pushed out of.

...zl (increq; [ D@D |1 pullincreq. (.. )1 | s;[SZ; | ...]...
Thenz; is pulled intos; followed by¢;, so that the register is incremented.

...s;[ push incaclg.| §Dj 11
| tj[ pushincack; | incack[ 1] 7; | z;[...111...

The acknowledgemeriicack;[ ] is then pushed out to the top level, where it is pulled
in by p;, which then activates the next instruction by pushing sayt1[ ]. The garbage
st;[ 1] incacki[ 1(i.e. GI;;) is left insidep;, where it is added to the accumulated garbage.
We now have

stipal 110G Inc()Tiga | IR (k 4+ Dli+1-
We now consider the execution ff : DecJump(}, i")]);. Starting from
st;[ 1] [li : DecJump(j, i)l | [R; (k)1

the instruction is activated (ambiepf), and thetestambient is sent out to test whethes
Zero or non-zero.

opilstil TITFZi |TRS; | ... ] | tesf Testz | Testg ] | [R; (k).

Once it has done the test it produces ambiested which signals the result t@; by
producing eithedonez or dones, depending on whethégis zero or non-zero. There are
now two possibilities, depending on whettkes zero or non-zero.

1.kis zero. TherFZ ;; enableg; to pull in testz andtested

pilst;[ 1] donez[ ]| testedtes{ Tests 11 | pushst; |sty[1]...].

Then p; pushes out ambient;  to trigger the next instruction. (In the case that= i
there is a choice of ambients to push out, but this does not affect the determinism of the
computation in any significant way.) The process

st;[ 1| donez[ ] | tested tesf Tests | |
(i.e. G J;;) is added to the accumulated garbage. We are left with
sti[ 11 [l : DecJump(j, i1 | IR (K) i1
2.kis non-zero. TherF'S;; enablesp; to pull inzests; andtested
pilst;[ 1] dones[ ]| testedtes{ Testz 11| FD;; | decreq[DRj] [...].

Thenp; pushes out ambiemtecreq to carry out the decrement. Thelecreg pulls ins;
(the entire register).

pilsti[ 1| doneg| ]| testedtes{ Testz ] | pull decack.(...) | ...]
| decrequ;[ 1| pusht; | s;[SD; [ I; | ;[ TD; | I; | [Rj(k — DI 111
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Now s; can pull inu; and push out;. Thendecreg pushes; out to the top level, which
enables; to detect it is at the top level by pulling ofecreg.

pilst;[ 1] dones[ ]| testedtes{ Testz 1] | pull decack.(...) | ...]
| tj[decreq[sj[uj[ 111; 111 TDS; | TDZ; | I; | [R;(k — DI I.

Now ¢; pushes out the decremented register—with outermost ambient ejtber ;, de-
pending on the value d&&—and then signals completion of the decrement by pushing out
decack[ 1. We illustrate the case when— 1> 0:

pilst;[ 1] dones[ ]| testedrest[ Testz 1] | pull decack.(...) | ...]
| decack] 1| tj[decreq[sj[uj[ 117;111TDZ; | 1; 11 [[R;(k — DTi.

Thendecack is detected byp;, which pulls in the left-over;, and activates the next
instructioni + 1. The garbage accumulates as eitfié?S;; or GDZ;;. We are left with

stiral 11 [li : DecJump(j, iNli41 | [Rj(k — D]li1.

Finally, we see that i€EM_ is terminal (sad; = a + 1) then[CM_.] . has no reductions.
[CM. 1, displays barlst, 1 to indicate termination. The result of the computation, stored
in register 0, is usable by subsequent computations. On the other ha@i, dbes not
terminate, then neither dod€M]], and the barlst,1 will never appear. There are no
“bad” computations, i.e. ones which halt in a non-final state, diverge, or produce unintended
behaviour. We have a encoding which shows Turing completeness, and also undecidability
of termination and of weak barbs[]
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