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Abstract

Cardelli and Gordon’s calculus of Mobile Ambients has attracted widespread interest as a model
of mobile computation. The standard calculus is quite rich, with a variety of operators, together with
capabilities for entering, leaving and dissolving ambients. The question arises of what is a minimal
Turing-complete set of constructs. Previous work has established that Turing completeness can be
achieved without using communication or restriction. We show that it can be achieved merely using
movement capabilities (and not dissolution). We also show that certain smaller sets of constructs are
either terminating or have decidable termination.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since its introduction in 1998, Cardelli and Gordon’s calculus of Mobile Ambients (MA)
[9] has attracted widespread interest as a model of mobile computation. Anambientis a
vessel containing running processes. Ambients can move, carrying their contents with them.
The standard calculus is quite rich, with a variety of operators, together with capabilities
for entering, leaving and dissolving ambients. Subsequent researchers have increased this
variety by proposing alternative movement capabilities. We may mention Mobile Safe
Ambients (SA)[15], Robust Ambients (ROAM)[13], Safe Ambients with Passwords (SAP)
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[17], the Push and Pull Ambient Calculus (PAC)[21], Controlled Ambients (CA)[27], and
the version of Boxed Ambients (BA)[3] with passwords (NBA)[5]. We shall use the term
Ambient Calculus (AC) to refer to all of these variants.

The question arises of what is a minimal set of constructs which gives the computational
power of Turing machines, i.e. isTuring-complete. One way to tackle this is to encode into
the Ambient Calculus some other process calculus which is known to be Turing-complete.
Cardelli and Gordon showed how to encode the asynchronous�-calculus into MA[9]. The
encoding makes use of MA’s communication primitives. However Cardelli and Gordon also
encoded Turing machines directly intopure MA, where there is no communication. (In-
cidentally, Zimmer[28] subsequently encoded the synchronous�-calculus without choice
into pure SA.)

Busi and Zavattaro[8] showed how to encode counter machines into pure public MA
(where by “public” we mean lacking the restriction operator). Independently, Hirschkoff,
Lozes and Sangiorgi[14] encoded Turing machines into the same sub-calculus. In this
paper we follow up this work and investigate whether even smaller fragments of AC can be
Turing-complete. We concentrate entirely on pure AC. Our work is very much inspired by
that of Busi and Zavattaro; we follow them in using counter machines rather than Turing
machines.

The major question left open by previous work is whether pure AC without theopen
capability which dissolves ambients can be Turing-complete. This question is of particular
interest in view of the decision which Bugliesi, Castagna and Crafa took to dispense with
ambient opening when proposing their calculus of Boxed Ambients (BA)[3,18,5,10]. They
advocate communication between ambients where one is contained in the other, rather than
the same-ambient communication of MA. A similar model of communication is employed
in [23].

We give an encoding of counter machines into pure public MA without theopen capa-
bility (Theorem3.10), showing that this fragment is Turing-complete. The encoding also
demonstrates that both termination and the observation of weak barbs are undecidable prob-
lems. As far as we are aware, Turing completeness has not previously been shown for any
pure ambient calculus without the capability to dissolve ambients (although we note that
an encoding of�-calculus into BA with communication is given in[3]).

Two different kinds of ambient movement were identified by Cardelli and Gordon[9]:
subjective and objective.Subjectivemovement is where an ambient moves itself;objective
movement is where it is moved by another ambient. For instance, ifm[ P ] (an ambient
namedm containing processP) is to enter another ambientn[ Q ], then control can reside
in P or in Q. The standard calculus MA opts for subjective movement, while objective
movement (so-called “push and pull”) has been studied in[21]. We shall show that counter
machines can be encoded into the pure push and pull calculus (PAC) without theopen
capability.

A number of calculi are hybrids between subjective and objective movement: when
handling the entry ofm[ P ] into n[ Q ], they requireP andQ to synchronise. In Mobile
Safe Ambients (SA)[15], an ambient must explicitly allow itself to be entered by means
of aco-capability. It is straightforward to encode standard MA into SA by equipping each
ambient with the necessary co-capabilities. Therefore Turing completeness results for MA,
such as that mentioned above, will extend to SA, but not the other way round.
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Robust Ambients (ROAM)[13] is another calculus where ambients must synchronise to
perform an entry. Form[ P ] to entern[ Q ], P must namen andQ must namem, which is a
symmetrical blending of subjective and objective movement. Turing completeness results
for either MA or PAC will extend to ROAM (since our encodings use only a finite set of
names).

As remarked above, MA and PAC are less synchronisedbetweenambients than SA or
ROAM. Movement can be made less synchronouswithin ambients if we require that move-
ment capabilities have no continuations, so that ifm[ P ] entersn[ Q ] then neitherP norQ
can rely on when this has happened in the rest of their code. This may be calledasynchronous
movement. We show that both subjective and objective calculi with asynchronous move-
ment (and without restriction) are Turing-complete—there is enough power in processes
being able to synchronise on dissolving ambients.

As far as infinite behaviour is concerned, ambients are usually endowed with the repli-
cation operator, and our main results focus on variants of the ambient calculus with this
operator. Nonetheless, Busi and Zavattaro have shown that the strikingly simple sub-calculus
having only theopen capability and empty ambients, but with restriction and recursion, is
Turing-complete. For completeness, we show that the same is true for a calculus having
only thepush capability of PAC. Unlike in the�-calculus case, where recursion or repli-
cation are inter-definable, having one or the other in the ambient calculus has a significant
impact.

We are interested in findingminimal Turing-complete fragments of AC. This entails
showing that smaller fragments are too weak to be Turing-complete. Busi and Zavattaro
have shown that in the fragment of pure MA with theopen capability, but without movement
capabilities, it is decidable whether a given process has a non-terminating computation[8].
We show the same decidability property for public fragments with capabilities allowing
movement in one direction only (either entering or exiting). We also show that in certain
smaller fragments (where replication is only allowed on capabilities) every computation
terminates.

In this paper we focus on thecomputational strengthof fragments of the ambient calcu-
lus, rather than their relative expressiveness, and therefore we do not investigate whether
different fragments (e.g. with synchronous or asynchronous movement) are mutually en-
codable.

Fig. 1 illustrates the main results of this paper for MA and BA. The arrows represent
inclusions. Fig.2 illustrates the main results of this paper for PAC.

The paper is organised as follows. In Section2we recall various operators and capabilities
of the Ambient Calculus, together with their associated notions of reduction. In Section3
we discuss various Turing-complete languages, with and without theopen capability. In
Section4 we show that certain fragments of AC with replication are in fact terminating. In
Section5 we show that certain other fragments of AC have decidable termination. Finally
we draw some conclusions.

1.1. Related work

In independent work, Boneva and Talbot[2] present an encoding of two-counter machines
(a Turing-complete formalism) into pure public BA. The fragment of MA we consider in



504 S. Maffeis, I. Phillips / Theoretical Computer Science 330 (2005) 501–551

pure MA
in, out, open, restriction

Turing-complete [9]

BA
Turing-complete [3]

pure public MA
in, out, open

Turing-complete [8]

pure public BA
in, out

Turing-complete (Theorem 3.10)

in
Termination decidable

(Theorem 5.34)

out
Termination decidable

(Theorem 5.21)

Fig. 1. Main results for MA and BA.

PAC
Turing-complete [22]

pure public boxed PAC
pull, push

Turing-complete (Theorem 3.13)

pull
Termination decidable

(Theorem 5.36)

push
Termination decidable

(Theorem 5.21)

Fig. 2. Main results for PAC.

Theorem3.10is similar to theirs, but they allow replication on arbitrary processes, while we
only allow replication on capabilities. They show that reachability and name convergence
(the observation of weak barbs) are both undecidable problems. As their encoding can
take “wrong turnings” and is divergent, they have left the Turing completeness of their
fragment of MA as an open question. We show Turing completeness for our fragment, and
as a corollary we obtain the undecidability of termination and of name convergence. Our
methods do not show that reachability is undecidable, while their methods do not show that
termination is undecidable.
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The focus of our work is different from that of Boneva and Talbot, in that we concentrate
on Turing completeness and termination, while they concentrate on reachability and model-
checking in the ambient logic.

2. Operators and capabilities

We will investigate a variety of operators and capabilities of pure Mobile Ambients
(MA) [9] and variants thereof. We letP, Q, . . . range over (process) terms andM, . . . over
capabilities which can be exercised by ambients. We assume a setN of names, ranged over
by m, n, . . ., and a set of process variables (used for recursion), ranged over byX, . . ..

First we state a “portmanteau” language of (process) terms which contains all theoper-
atorswhich we shall consider.

P ::= 0 | n[ P ] | P | Q | M.P | �n P | ! P | X | rec X.P.

Here as usual0 denotes the inactive process. We shall feel free to omit trailing0s and write
empty ambients asn[ ] rather thann[0 ]. The termn[ P ] is an ambient namedn containing
termP. The termP | Q is the parallel composition ofP andQ. We writeP i for the parallel
composition ofi copies ofP (the laws of structural congruence stated below will ensure
that parallel composition is associative). The termM.P performs capabilityM and then
continues withP. The term�n P is termP with namen restricted. As usual, restriction
is a name-binding operator. We denote the set of free names of a termP by fn(P ). The
term ! P is a replicated term which can spin off copies ofP as required. The termrec X.P

is a recursion in whichX is a bound process variable. We shall call terms with no free
process variables “processes” (the closed terms). We shall refer to “terms” when we mean
terms possibly with free process variables (i.e. open terms). Recursion isunboxed[24,8] if
in rec X.P any occurrence ofX within P is not inside an ambient. We shall only require
unboxed recursion. If recursion is available then! P can be simulated byrec X.(X | P ),
and so we shall never require both replication and recursion.

Here is the set of allcapabilitieswe shall consider:

M ::= open n | open n | in n | in n | out n | out n | push n | pull n.

The first capabilityopen n is used to dissolve an ambient namedn. Sometimes we consider
the “safe” version[15] where the ambient being opened performs “co-capability”open n.
The remaining capabilities all relate to movement. We can distinguish betweensubjective
andobjectivemoves: The capabilitiesin n andout n enable an ambient to enter or leave
an ambient namedn. This is subjective movement. Again, sometimes we consider the
“safe” versions of the capabilities where the ambient being entered or left performs “co-
capabilities”in n or out n. By contrast, objective movement is where ambients are moved
by fellow ambients. We consider the so-called “push” and “pull” capabilities of PAC[21].
An ambient containing another ambient namedn can use the capabilitypush n to push the
other ambient out. Similarlypull n can be used to pull in an ambient namedn.

Capabilities act as “guards”, in the sense that given a termM.P , capabilityM must be
consumed beforeP becomes active. We shall say that an occurrence ofP in Q is guarded
if P is a subterm of some subtermM.R of Q.
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Structural congruence≡equates terms which are the same up to structural rearrangement.
It is defined to be the least congruence satisfying the following rules:

0 | P ≡ P �n 0 ≡ 0,

P | Q ≡ Q | P �m �n P ≡ �n �m P,

(P | Q) | R ≡ P | (Q | R) ! P ≡ P | ! P,

�n (P | Q) ≡ (�n P ) | Q if n /∈ fn(Q) rec X.P ≡ P {rec X.P/X},
�n m[ P ] ≡ m[ �n P ] if m �= n.

When we say that computation is deterministic (when discussing encodings of counter
machines into various ambient languages), we identify structurally congruent processes.

On several occasions we shall make use ofcommutative-associative structural congru-
ence≡ca , which is the least congruence satisfying the laws:

P | Q ≡ca Q | P (P | Q) | R ≡ca P | (Q | R).

This has the property that for any termP the set{Q : Q ≡ca P } is finite.
The reductionrelation→ between processes describes how one process can evolve to

another in a single step. We start by defining the reductions associated with the capabilities.

(Open) open n.P | n[ Q ] → P | Q,

(In) n[ in m.P | Q ] | m[ R ] → m[ n[ P | Q ] | R ],
(Out) m[ n[ out m.P | Q ] | R ] → n[ P | Q ] | m[ R ],
(SafeOpen) open n.P | n[ open n.Q | R ] → P | Q | R,

(SafeIn) n[ in m.P | Q ] | m[ in m.R | S ] → m[ n[ P | Q ] | R | S ],
(SafeOut) m[ n[ out m.P | Q ] | out m.R | S ] → n[ P | Q ] | m[ R | S ],
(Pull) n[ pull m.P | Q ] | m[ R ] → n[ P | Q | m[ R ] ],
(Push) n[ m[ P ] | push m.Q | R ] → n[ Q | R ] | m[ P ].

We shall be considering languages which only possess a subset of the full set of capabilities.
When we consider languages with capabilityopen, we shall always have capabilityopen
as well, and we shall adopt rule (SafeOpen) and not rule (Open). Clearly, if a language
has capabilitiesopen, open and replication on these capabilities, then the effect of rule
(Open) can be simulated: every ambient can be made perfectly receptive to being opened
by convertingn[ P ] into n[ ! open n | P ]. Similar considerations apply to capabilitiesin
andin, out andout.

The remaining rules for reduction are

(Amb)
P → P ′

n[ P ] → n[ P ′ ] (Par)
P → P ′

P | Q → P ′ | Q
,

(Res)
P → P ′

�n P → �n P ′ (Str)
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
.

We write⇒ for the reflexive and transitive closure of→.
A languageis a pair(L, →) consisting of a set of processesL together with a reduction

relation→. We shall write(L, →) asL for short. We letL, . . . range over languages. We
shall define a language by giving the set of processes. The reduction relation (and structural
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congruence) for the language will be tacitly assumed to be given by the set of all the rules in
this section which are applicable to the available operators and capabilities, except as noted
above for the “safe” and standard versions of thein andout capabilities. Acomputationis
a maximal sequence of reductionsP0 → P1 → · · ·.

The most basic observation that can be made of a process is the presence of top-level
ambients (i.e. unguarded ambients which are not contained in other ambients)[9]. We say
that n is a strong barbof P (P ↓ n) iff P ≡ �m1 . . . mk (n[ Q ] | R) for someQ andR
(wheren �= m1, . . . , mk), andn is aweak barbof P (P ⇓ n) iff P ⇒↓ n.

3. Turing-complete fragments of AC

A basic measure of the computational strength of a process language is whether Turing
machines, or some other Turing-complete formalism, can be encoded in the language.
Cardelli and Gordon[9] established that pure MA can encode Turing machines. Busi and
Zavattaro[8] improved this result by showing that counter machines (CMs) can be encoded
in pure public MA.

We shall show that CMs can be encoded in pure public MA withoutopen, which can be
called pure public BA. We shall also encode CMs in a version of MA with asynchronous
movement (i.e. no continuations after capabilities), but with theopen capability.

A Counter Machine (CM)is a finite set of registersR0, . . . , Rb (b ∈ N). EachRj contains
a natural number. We writeRj (k) for Rj together with its contentsk. Initially the registers
hold the input values. The CM executes a numbered list of instructionsI0, . . . , Ia (a ∈ N),
whereIi is of two forms:
• i : Inc(j) adds one to the contents ofRj , after which control moves toIi+1.
• i : DecJump(j, i′) subtracts one from the contents ofRj , after which control moves to

Ii+1, unless the contents are zero, in which caseRj is unchanged and the CM jumps to
instructioni′.

The CM starts with instructionI0, and executes instructions in sequence indefinitely, until
control moves to an invalid instruction number (which we can take to bea + 1), at which
point the CM terminates, and the output is held in the first register.

CMs as defined above are basically the Unlimited Register Machines of[26]. They use
a set of instructions which is minimal while retaining Turing completeness[20]. (In fact
CMs with no more than two registers are already Turing-complete.)

3.1. Criteria for turing completeness

It is best to make clear what criterion for Turing completeness we shall use in this paper.
In the classical setting, a programming language isTuring-completeif for every partial

recursive function (equivalently, every CM-computable function) there is a program in
the language which computes it. It is understood that whenever the recursive function is
defined, the corresponding program isguaranteedto yield the correct value (and not to fail
to complete, or to give wrong results).

We now consider what this might mean in the setting of process calculi, and ambient
calculi in particular. LetCM be a CM (program plus registers with their contents). Let
[[CM]] be the encoding ofCM in a target fragment of AC. We shall require the following:
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Criterion 3.1.
• If CM terminates theneverycomputation of[[CM]] completes successfully, meaning that

it signals completion to other processes in some manner, obtains the correct result and
makes the result of the computation (i.e. the contents of the first register) available in
usable form to potential subsequent computations to be performed by other processes.

• If CM does not terminate, thennocomputation of[[CM]] signals completion.

Notice that this criterion offers aguaranteethat the CM will be simulated correctly, much
as any conventional Turing-complete programming language is guaranteed to compute any
partial recursive function.

The two requirements that completion is signalled to other processes and that the result
is available to other processes mean that the output is made fully explicit, and that we can
sequentially compose encodings of CMs in a straightforward manner. Again, this is what
we would expect in any conventional setting; fundamental results such as the undecidability
of the halting problem depend on being able to compose machines sequentially.

In our encodings, completion will be signalled by the appearance of a particular ambient
at the top level. So we can deduce from the undecidability of the halting problem for CMs
that for the target fragment it is undecidable in general for a processP and namen whether
P ⇓ n.

Although all our encodings in this paper will satisfy Criterion3.1, there has been recent
interest in weaker notions of Turing completeness, where success of the encoded computa-
tion is possible but not guaranteed. Here is a possible formulation of what might be referred
to as “may” (as distinct from “must”) Turing completeness:

Criterion 3.2.
• If CM terminates thensomecomputation of[[CM]] signals completion to other processes.

Moreover, if any computation of[[CM]] does signal completion then it does indeed
complete successfully, meaning that it obtains the correct result and makes the result
of the computation available in usable form to potential subsequent computations to be
performed by other processes.

• If CM does not terminate, thennocomputation of[[CM]] signals completion.

Again we have required that output is made fully explicit, allowing sequential composition
of encoded CMs. Again also it is likely that completion will be signalled by some kind of
barb, the existence of which will therefore be undecidable.

An example satisfying Criterion3.2is the encoding by Hirschkoff, Lozes and Sangiorgi
[14] of TMs into a fragment of MA, where the encoding may take a “wrong turning”. Such
wrong turnings are strictly limited, in that the process will halt immediately in a state which
cannot be mistaken for successful completion. Since we give in this paper an encoding
satisfying Criterion3.1into a similar fragment, this does not provide an example of where
Criterion3.2can be met, but not Criterion3.1.

A particularly interesting recent result, involving CCS[19] rather than ambient calculi,
is the encoding by Busi, Gabbrielli and Zavattaro[7] of CMs into CCS with replication
rather than recursion, denoted CCS!. As with the Hirschkoff et al. encoding, processes may
take wrong turnings and so there is no guarantee of success. The successful computation
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will terminate, while faulty computations are forced to diverge. So the encoding satisfies
the following criterion:

Criterion 3.3.
• If CM terminates thensomecomputation of[[CM]] terminates. Moreover, if any com-

putation of[[CM]] does terminate then it obtains the correct result, which is available to
subsequent computations.

• If CM does not terminate, thennocomputation of[[CM]] terminates.

However the encoding does not satisfy Criterion3.2, since there is no unambiguous
signal of completion. The successful computation will produce a barb to indicate that the
last instruction has been reached, but faulty computations can also produce this barb, so that
it can be misleading to other processes. In fact Busi et al. show that the existence of weak
barbs is decidable for CCS!, so that there is little prospect of satisfying Criterion3.2. The
point is that termination is the only foolproof indication that a computation has completed
successfully, and this is not something that can be recognised by CCS. Of course, matters
would be different if one moved to a process language where termination can be detected,
such as ACP[1]. In fact, if termination can be signalled to other processes then Criterion
3.3 is a special case of Criterion3.2.

As stated earlier, our encodings will satisfy Criterion3.1. They will also satisfy the
following additional property:

Criterion 3.4.
• If CM terminates theneverycomputation of[[CM]] terminates.
• If CM does not terminate, thennocomputation of[[CM]] terminates.

We can therefore deduce that it is undecidable whether a process has an infinite compu-
tation. (In fact, this can still be deduced if the second item is weakened to: ifCM does not
terminate, then[[CM]] has an infinite computation.)

However, since Criterion3.4is not required for Turing completeness, we cannot deduce
that a language fails to be Turing-complete simply because termination is decidable. There
could still be an encoding of CMs into the target language where all computations of encoded
CMs are infinite. When the CM terminates, the encoded CM reports a result in a finite
time before diverging. Despite this, it is possible to achieve separation results by showing
Criterion3.4for one fragment and decidability of termination for another fragment.

Observe that, unlike Criterion3.4, Criterion 3.3 does not imply that it is undecidable
whether a process has an infinite computation. In fact Busi et al. show that this is decidable
for CCS! [6]. On the other hand, both criteria imply that the existence of afinitecomputation
(convergence) is undecidable, as Busi et al. state for CCS! [7].

Many encodings (such as the one by Hirschkoff et al. referred to above) satisfy the
following one-step preservation property: ifCM moves in one step toCM ′ then[[CM]] ⇒
[[CM ′]]. While one-step preservation is useful, we contend that it is needlessly strong for
Turing completeness. Consider for instance a Turing machine (TM) which is non-erasing
in the following sense: at each step it copies the tape contents to the next unused part of the
tape and then makes the change required by the instruction. Such a machine is clearly as
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powerful as a normal TM. However we cannot encode TMs into non-erasing TMs and satisfy
the one-step preservation property, since the non-erasing TM has extra information. (Note
that reachability of configurations is decidable for non-erasing TMs, since the tape contents
keep on increasing in size, so that Turing completeness does not imply that reachability is
undecidable.)

This is relevant to our concerns, since in our encodings we accumulate inert garbage. Just
as with non-erasing TMs, this is no barrier to Turing completeness.

3.2. Existing work

Busi and Zavattaro gave encodings of CMs into two fragments of pure AC. Both encodings
are deterministic (up to structural congruence) and satisfy Criteria3.1 and3.4. The first
fragment, which we shall callLop

� , is defined by

P ::= 0 | n[ ] | P | Q | open n.P | �n P | X | rec X.P.

Theorem 3.5(Busi and Zavattaro[8] ). L
op
� is Turing-complete.

It is striking that empty ambients with no movement capabilities are enough. There is
an essential use of restriction to obtain the effect of mutual recursion. We shall show that a
similar result holds when we substitutepush for open (Section3.3).

Busi and Zavattaro’s second encoding of CMs is into the following language, which we
shall callLop

io :

P ::= 0 | n[ P ] | P | Q | open n.P | in n.P | out n.P | ! P.

Notice thatLop
io does not require restriction, and uses replication rather than recursion.

Clearly,Lop
io is exactly pure public MA.

Theorem 3.6(Busi and Zavattaro[8] ). L
op
io is Turing-complete.

Independently, Hirschkoff, Lozes and Sangiorgi[14] have encoded Turing machines into
L

op
io , with the additional syntactic constraint that the continuation of a capability must be

finite, that is, must not involve replication. As stated above (Section3.1), this establishes a
form of Turing completeness which accords with Criterion3.2(“may”), rather than Criterion
3.1(“must”).

We shall show that Theorem3.6 can be improved in two ways: the continuations ofin
andout can be removed (Section3.4), or theopen capability can be removed (Section3.5).

3.3. Recursion andpush

Let Lrp be the following language (a fragment of PAC[21], except that we use recursion
instead of replication):

P ::= 0 | n[ P ] | P | Q | push n.P | �n P | X | rec X.P.
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If we restrictP to be the empty process in the productionP ::= n[ P ] of the grammar
above, then this language can be regarded as asynchronous CCS, with the proviso that a
process must be enclosed in anenvironmentambient in order to enable pushing of empty
ambients to the outside. Consequently, the language is Turing-complete, as it is possible to
encode CMs in asynchronous CCS[8]. Theorem3.5was proved by encoding asynchronous
CCS inL

op
� . We could prove Theorem3.7below by similarly encoding asynchronous CCS

in Lrp, but it is more convenient to encodeL
op
� in Lrp.

Theorem 3.7. Lrp is Turing-complete.

Proof. (Sketch) Letinert contextsbe defined as

C ::= n[ • ] | C | n[ ] | �n C .

We defineLn[rp] as the set of termsC{P } whereP is a term ofLrp with all ambients empty
andC{•} is an inert context. The purpose ofC{•} is to make sure that thepush operations in
P can be executed, by placingP inside an enclosing ambient. Apart from this consideration,
contexts cannot perform any reduction at all. We have thatLn[rp] is closed under reductions.

Consider the encoding fromLop
� to Lrp which is homomorphic on all terms except for

[[open n.P ]] = push n.[[P ]]. For allP in L
op
� , we have that:

(1) for all n, if P → Q then either
(a) n[ [[P ]] ] → n[ [[Q]] ] | m[ ], for somem; or
(b) there areQ′ ∈ L

op
� andm �= n such thatQ ≡ �mQ′ andn[ [[P ]] ] → �m(n[ [[Q′]] ] |

m[ ]);
(2) for all inert contextsC{•} and R ∈ Ln[rp], if C{[[P ]]} → R then there areC′{•},

Q, Q′ ∈ L
op
� andm such thatP → Q, Q ≡ �m Q′ andR ≡ C′{[[Q′]]}.

Point (1) shows that there is an effective way to simulate a reduction ofL
op
� in Ln[rp] (up

to losing an outermost restriction, in case (1b)). Point (2) guarantees that every reduction
of a term ofLn[rp] in the image of the encoding corresponds to a reduction of the original

term in L
op
� (again up to outermost restriction). The outermost restriction aroundQ′ can

be disposed of without altering the behaviour of the term because the resulting term is not
composed with any other terms. Both (1) and (2) follow by induction on the derivation of
→. �

3.4. “Asynchronous” Languages withopen

In this subsection we show that there are Turing-complete AC languages even when we
do not allow continuations after movement capabilities. We show this both for objective
movement (Theorem3.8) and for subjective movement (Theorem3.9).

Let L
op
ppa be the following language (a fragment of PAC):

P ::= 0 | n[ P ] | P | Q | open n.P | push n.0 | pull n.0 | ! open n.P .

Note that push and pull have no continuation. We might refer to this asasynchronous
movement. Also, replication is only used withopen.
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Theorem 3.8. L
op
ppa is Turing-complete.

Proof. We describe an encoding of CMs intoLop
ppa. A CM will be encoded as a system

consisting of processes encoding the registers in parallel with processes for each instruction.
We consider a particular CM calledCM, with instructionsI0, . . . , Ia and registers

R0, . . . , Rb. Let CM(i : k0, . . . , kb) representCM when it is about to execute instruc-
tion Ii and storingkj in registerj (j �b). Let the (unique) finite or infinite computation of
CM = CM0 beCM0, CM1, . . . , CMl, . . ., whereCMl = CM(il : k0l , . . . , kbl).

First we describe the registers.Rj (k) is encoded asrj [ k ], where the numeral processk

is defined by

0
df= z[ ] k + 1

df= s[ k ].
Thus registers are distinguished by their outermost ambient.

In describing the encoding of the instructions, we must take into account the fact that the
decrement/jump instructions will accumulate garbage each time they are used, as the code
for either decrement or jump is left unused. We therefore parametrise our encoding by the
index l of the stage we have reached in the computation. Letdec(i, l) (resp.jump(i, l)) be
the number of decrements (resp. jumps) performed by instructioni during the computation
of CM up to, but not including, stagel.

We denote the encoding of instructionIi at stagel by [[Ii]]l , defined as follows:

[[i : Inc(j)]]l df= ! open sti .rj [ pull rj |
s[ pull rj | open rj .sti+1[ ] | push sti+1 ] | push sti+1 ],

[[i : DecJump(j, i′)]]l df= ! open sti .ci[ pull rj | open rj .(Sij | Ziji′) ] |
! open di | ! open d ′

i | (ci[ Ziji′ ])dec(i,l) | (ci[ Sij ])jump(i,l),

Sij
df= di[ pull s | rj [ pull s | open s.(ei[ ] | push ei) ] | push ei | sti+1[ ] ] |

open ei .push di,

Ziji′
df= open z.(d ′

i[ rj [ 0 ] | sti′ [ ] ] | push d ′
i ).

Notice that the continuations of all occurrences ofopen are finite (the same condition as
used in[14] and mentioned in Section3.2).

We define:

[[CM(i : k0, . . . , kb)]]l df= sti[ ] | [[I0]]l | · · · | [[Ia]]l | r0[ k0 ] | · · · | rb[ kb ].

The encoding ofCM is [[CM]] df= [[CM0]]0. The instructions start without any garbage. The
encoded CM will go through successive stages[[CMl]]l . We show that for each non-terminal
stagel, [[CMl]]l ⇒ [[CMl+1]]l+1, and that[[CMl]]l is guaranteed to reach[[CMl+1]]l+1.

An instruction process[[Ii]]l is triggered by the presence ofsti at the top level; the
instruction starts by consumingsti . The execution of[[Ii]]l finishes by unleashing thesti

ambient corresponding to the next instruction. Throughout the computation, at most onesti

ambient is present. The encoded machine terminates if and when the ambientsta+1 appears
at the top level. There are various cases depending on the nature of the instructionIi .
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An instruction process of the form[[i : Inc(j)]]l creates a new registerrj [ s[ ] ], which
already contains the successor ambient needed to perform the increment. The new register
pulls the existingrj into its core, and strips off the outer casing. The instruction then signals
completion by pushing out the trigger for the next instruction. Computation is entirely
deterministic. We have:

. . . sti[ ] | [[i : Inc(j)]]l | rj [ k ] . . . ⇒ . . . sti+1[ ] | [[i : Inc(j)]]l+1 | rj [ k + 1 ] . . .

An instruction process of the form[[i : DecJump(j, i′)]]l creates a new ambientci , pulls
in registerrj and strips off its outer layer, leaving the numeral. This numeral has outermost
ambient eithers or z depending on whether the numeral is zero or a successor.
• If the numeral is a successor it is pulled inside ambientdi and then inside a new register

ambientrj where it is decremented. The ambientdi , containing the new incremented
register along with the triggersti+1, is then pushed out ofci , and opened to unleash the
trigger. We have:

. . . sti[ ] | [[i : DecJump(j, i′)]]l | rj [ k + 1 ] . . .

⇒ . . . sti+1[ ] | [[i : DecJump(j, i′)]]l | ci[ Ziji′ ] | rj [ k ] . . .

≡ . . . sti+1[ ] | [[i : DecJump(j, i′)]]l+1 | rj [ k ] . . .

The execution of the decrement leavesci[ Ziji′ ] behind as garbage, which does not take
any further part in the computation. Again, computation is entirely deterministic.

• If the numeral is zero, this is detected byopenz, and a new ambientdi , containingrj [ 0 ]
along with the triggersti′ , is then pushed out ofci , and opened to unleash the trigger.
We have:

. . . sti[ ] | [[i : DecJump(j, i′)]]l | rj [ 0 ] . . .

⇒ . . . sti′ [ ] | [[i : DecJump(j, i′)]]l | ci[ Sij ] | rj [ 0 ] . . .

≡ . . . sti′ [ ] | [[i : DecJump(j, i′)]]l+1 | rj [ 0 ] . . .

Again, computation is entirely deterministic.
Finally, we see that ifCML is terminal (so thatiL = a+1) then[[CML]]L has no reductions.
[[CML]]L displays barbsta+1 to indicate termination. The result of the computation, stored
in register 0, is usable by subsequent computations. On the other hand, ifCM does not
terminate, then neither does[[CM]], and the barbsta+1 will never appear. There are no
“bad” computations, i.e. ones which halt in a non-final state, diverge, or produce unintended
behaviour. We have a encoding which shows Turing completeness, and also undecidability
of termination and of weak barbs.�

We can achieve exactly the same asynchrony for subjective movement, though the en-
coding is more elaborate. LetL

op
ioa be the following language:

P ::= 0 | n[ P ] | P | Q | open n.P | in n.0 | out n.0 | ! open n.P .

Theorem 3.9. L
op
ioa is Turing-complete.(Proof: see AppendixA.)

This result improves Theorem3.6. Moreover, just as with Theorem3.8, CMs are encoded
in such a way that the continuations of all occurrences ofopen are finite.
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3.5. Languages withoutopen

In this subsection we encode CMs into a language with just the standard movement
capabilities, namelyin andout.

Let Lio be the following language:

P ::= 0 | n[ P ] | P | Q | in n.P | out n.P | ! in n.P | ! out n.P .

ClearlyLio is a sublanguage ofLop
io as defined earlier. The major difference is thatLio does

not have theopen capability. Also, replication is only applied to the capabilities. We shall
see in Sections4and5 that the computational strength of a language can depend on whether
replication is applied to capabilities or to ambients.

Theorem 3.10.Lio is Turing-complete.

Proof. We sketch the encoding of CMs inLio here; see AppendixB for the details. One
problem we encountered was in dealing with instructions. Since each instructionIi has
to be used indefinitely many times, one might encode it as! pi[ Pi ], where each time
the instruction is needed a new copy ofpi[ Pi ] is spun off. But then the previously used
copies may interfere with the current copy, so that for instance acknowledgements may get
misdirected to oldpi ambients still present. This issue would not arise if we could destroy
unwanted ambients using theopen capability.

Registers consist of a series of double skinss[ t[ . . . ] ] with z[ ] at the core. We use a
double skin rather than the more obviouss[ s[ z[ ] ] ] style. This is to help with decrementing,
which is done by stripping off the outermostsand then in a separate operation stripping off
thet ambient now exposed.

We follow Busi and Zavattaro in carrying out the increment of a register by adding a new
s[ t[ ] ] immediately surrounding the central corez[ ]. This seems preferable to adding a
new double skin on the outside, since it keeps the increment code and decrement code from
interfering with each other.

The basic idea is that each instructionIi is triggered by entering asti ambient. All the
other instructions and all the registers enter as well—a monitor process checks that this
has happened beforeIi is allowed to execute. So the computation goes down a level every
time an instruction is executed. When an instruction finishes, it unleashes thesti ambient
to trigger the next instruction. If and when the computation finishes, the first register is sent
up to the top level, where it can serve as input for possible further computations.

Therefore we have Turing completeness. Our encoding furthermore establishes that the
weak barb relation is undecidable, and that having a non-terminating computation is unde-
cidable.

As the computation proceeds, inert garbage accumulates in both the instructions and the
registers. We handle this much as in the proof of Theorem3.8, letting the encodings of the
instructions and the registers be parametrised with the current step in the computation.

The computation is largely deterministic; the exceptions are that, between executions of
instructions, the instructions and registers make their way down a level in an indeterminate
order, and there is also some limited concurrency in the increment.�
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Remark 3.11. We shall prove that if we removeout from Lio the resulting language is
terminating (Theorem4.8), and similarly if we removein the resulting language is termi-
nating (Theorem4.14). Since terminating languages cannot be Turing-complete, this will
establish thatLio is a minimal Turing-complete language.

Remark 3.12. In independent work, Boneva and Talbot[2] have encoded two-counter
machines into the following language:

P ::= 0 | n[ P ] | P | Q | in n.P | out n.P | ! P.

(Notice that this language differs slightly fromLio, in that it allows replication of arbitrary
processes, including ambients.) However, their encoding can diverge and take wrong turn-
ings into error states, which means that they do not claim Turing completeness. Nevertheless
because they establish one-step preservation, they can show that it is undecidable whether
one process is reachable from another, and also whetherP ⇓ n for an arbitrary processP
and namen.

It is an open question whether reachability for arbitrary processes inLio is decidable.
Even if reachability were decidable forLio, this would not contradict Turing completeness
(see Section3.1).

We have just encoded CMs into languageLio with the standard subjective movement
capabilities (and withoutopen). We can also encode CMs in the following languageLpp
with objective moves:

P ::= 0 | n[ P ] | P | Q | push n.P | pull n.P | ! push n.P | ! pull n.P .

Theorem 3.13.Lpp is Turing-complete. (Proof: see AppendixC.)

Remark 3.14. We shall prove that if we removepush from Lpp the resulting language
is terminating (Theorem4.8), and if we removepull then termination is decidable for the
resulting language (Theorem5.21).

4. Terminating fragments of AC

We would like to know whether the languageLio of Section3.5 is a minimal Turing-
complete language. As a partial answer to this question, we shall show in this section that if
we remove one of the movement capabilities (eitherin or out) then the resulting language
is in fact terminating, i.e. every computation terminates.

Definition 4.1. A language(L, →) is terminatingif every computation is finite.

In our proofs in this section we shall use a well-founded ordering on multisets. Amultiset
over a setA is a functionS : A → N, whereS(a) represents the multiplicity ofa in S. A
multiset isfinite if S(i) = 0 for all but finitely manyi ∈ N. Let FMS(A) denote the finite
multisets overA.
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Definition 4.2. Suppose thatA is partially ordered by<. We define� to be the transitive
closure of the relation between multisets overAwhere one multiset is obtained from another
by replacing an element by any finite number (including zero) of smaller elements.

An ordering iswell-foundedif it has no infinite decreasing chain.

Proposition 4.3(Dershowitz and Manna[11] ). If (A, <) is a well-founded partial order-
ing, then so is(FMS(A), ≺).

We shall apply this proposition withA as the natural numbersN with the standard
ordering.

4.1. Termination within

Let Liīp be the following language:

P ::= 0 | n[ P ] | P | Q | in n.P | in n.P | pull n.P

| ! in n.P | ! in n.P | ! pull n.P | �n P.

Notice thatLiīp is got fromLio by removing theout capability and (in order to sharpen the

next theorem) adding the co-capabilityin of SA, thepull of PAC, and restriction. We shall
prove thatLiīp is terminating (Theorem4.8below).

We start by eliminating restriction andpull. Letm ∈ N be a single designated name. Let
Lm

iī
be the following language:

P ::= 0 | m[ P ] | P | Q | in m.P | in m.P | ! in m.P | ! in m.P.

We define an encoding[[−]] from Liīp to Lm
iī

as follows:

[[0]] df= 0 [[pull n.P ]] df= in m.[[P ]],
[[n[ P ]]] df= m[ ! in m | [[P ]] ] [[ ! in n.P ]] df= ! in m.[[P ]],
[[P | Q]] df= [[P ]] | [[Q]] [[ ! in n.P ]] df= ! in m.[[P ]],
[[in n.P ]] df= in m.[[P ]] [[ ! pull n.P ]] df= ! in m.[[P ]],
[[in n.P ]] df= in m.[[P ]] [[�n P ]] df= [[P ]].

The idea of the encoding is that if we eliminate all restrictions then all existing reductions
can still occur (as well as potentially some new ones). Also, making all names the same can
only increase the possibility of reductions. Finally, sinceLm

iī
has only one name, we can

simulatepull by in , provided we equip each ambient with! in m; this again cannot remove
any potential reductions, and may well add new ones.



S. Maffeis, I. Phillips / Theoretical Computer Science 330 (2005) 501–551 517

Lemma 4.4. LetP, Q ∈ Liīp.
(1) If P ≡ Q then[[P ]] ≡ [[Q]].
(2) If P → Q then[[P ]] → [[Q]].

Proof. Straightforward and omitted.�

It follows that in order to show thatLiīp is terminating, it is enough to show thatLm
iī

is
terminating.

We first define thecapability nesting depth (cnd)of anLm
iī

process:

cnd(0)
df= 0 cnd(in m.P )

df= cnd(P ) + 1,

cnd(m[ P ]) df= cnd(P ) cnd( ! in m.P )
df= cnd(P ) + 1,

cnd(P | Q)
df= max(cnd(P ), cnd(Q)) cnd( ! in m.P )

df= cnd(P ) + 1,

cnd(in m.P )
df= cnd(P ) + 1.

Note that ifP ≡ Q thencnd(P ) = cnd(Q).
We next define thecapability degree(abbreviated to cd, or simply degree) of an ambient

m[ P ]. This is the cnd of thecapability componentof P, defined as follows. Any processP is
structurally congruent toP cap | P amb, where the capability componentP cap is the parallel
composition of processes prefixed by capabilities or replicated capabilities, and the ambient
componentP amb is the parallel composition of ambients. An empty parallel composition

is of course the nil process. We letcd(m[ P ]) df= cnd(P cap). This is well-defined with
respect to structural congruence. Notice that the degree of an ambient can reduce during a
computation, as a result of it entering another ambient. It can never increase. We shall refer to
theinitial degree of an ambient, which is its degree when it first becomes unguarded during
a computation. Note also that the degree of an ambient is unaffected by other ambients
entering of whatever degree.

During a computation an ambient can produce “children” inside itself, as it enters other
ambients. For instance,m[ ! in m.m[ ] ] can produce a series of newm[ ] ambients. These
children will have strictly lower capability degrees. For a given ambientm[ P ] there is a
fixed finite bound on the number of children which can be produced by a single reduction.

Strictly speaking, keeping track of an ambient during a computation relies on labelling
ambients. This can be done straightforwardly; we avoid mentioning it further, in order to
improve readability.

Proposition 4.5. Lm
iī

is terminating.

Proof. We give two proofs of termination: the first relies on assuming a minimal infinite
computation and then showing that there must be a smaller one, while in the second proof
we restrict attention to a “top-level” reduction strategy, assign multisets to the processes in
a computation and show that they are decreasing in a particular well-founded ordering.

Method 1.Suppose thatP0 → · · · → Pi → . . . is an infinite computation. LetD0 be the
maximum of the degrees of the unguarded ambients inP0. During the computation new
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ambients are created as children of existing ambients. They will all have initial degree less
than their parents, and thus< D0. Since the computation is infinite, infinitely many children
must be created (with finitely many ambients, computations must be finite, since no pair of
ambients can enter each other more than once). LetD < D0 be the maximum degree at which
infinitely many children are created. In the whole computation there are only finitely many
ambients with initial degree> D. At least one of these must beinfinitely productive, that
is, produce infinitely many children. Now letc > 0 be the number of infinitely productive
ambients of initial degree> D.

We have shown how to assign avalue(D, c) (D�0, c�1) to each infinite computation.
Now let C : P0 → · · · be an infinite computation with a minimal value of(D, c) in the
well-founded lexicographic ordering

(D, c) < (D′, c′) iff D < D′ or (D = D′ andc < c′) .

We shall obtain a contradiction by showing that there is another infinite computation with
a smaller value.

Choose any infinitely productive ambient of initial degree> D. We can assume that it is
available at the start ofC, by removing a finite initial segment ofC if necessary (this might
reduceD0, but does not changeD andc). Each processPi of C is of the formC{m[ C | A ]},
where we display the outer context and inner contents of our chosen ambient, withC the
capability component, andA the ambient component. There are four types of reduction:
(1) An outer reduction involving the context alone producesC′{m[ C | A ]}.
(2) An inner reduction involving the contents alone producesC′{m[ C | B ]}, where

A → B.
(3) The chosen ambient can enter an ambient in the context, producing childrenA′ and

resulting inC′{m[ C′ | A | A′ ]}.
(4) The chosen ambient can be entered by an ambientm[ R ] in the context, producing

childrenA′ and resulting inC′{m[ C′ | A | A′ | m[ R ] ]}.
Since the ambient is infinitely productive, there must be infinitely many reductions of types
(3) or (4).

We shall alterC in two ways. First we remove all type (2) reductions. This does not
affect any of the other reductions, since type (1) reductions are independent of the ambient
contents, and type (3) or (4) reductions only depend on the capability componentC, which is
unaffected by type (2) reductions. We get a new computationC′ : P ′

0 → · · · → P ′
i → · · ·,

with P ′
0 = P0. It must be infinite, since it still has all the type (3) or (4) reductions ofC.

Let the value ofC′ be (D′, c′). Any ambients inC′ must have already been inC. Hence
(D′, c′)�(D, c).

Now let us alterC′ by making the chosen ambient totally unproductive, as follows:
Suppose thatP0 = P ′

0 = C0{m[ C0 | A0 ]}. We translateC0 to C′
0 by replacing any ambient

m[ R ] by the nil process (and translating all other operators homomorphically). All the
reductions ofC′ can still proceed, since type (1), (3) or (4) reductions do not depend on the
ambient component of the chosen ambient, and the same capabilities are exercised by the
chosen ambient, even though no children are produced. We get a new infinite computation
C′′ : P ′′

0 → · · · → P ′′
i → · · ·.

Let the value ofC′′ be (D′′, c′′). Any ambients inC′′ must have already been inC′.
Hence(D′′, c′′)�(D′, c′). Also we have made an infinitely productive ambient of degree
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> D�D′ into one which is totally unproductive. We may or may not have reduced the
degree of the chosen ambient, but this does not matter. We have certainly reduced the
number of infinitely productive ambients of degree> D′. So eitherD′′ < D′ or c′′ < c′.
Hence(D′′, c′′) < (D′, c′)�(D, c). This contradicts the minimality ofC. �

Before giving the second method we need some further definitions and lemmas.
Any reductionP → Q is either “top-level” (i.e. one top-level ambient enters an-

other), or else “lower-level” (the reduction occurs inside a top-level ambient). In formal
terms, the difference is that rule (Amb) (Section2) is used in the latter case but not in
the former. Let us writeP →top Q for a top-level reduction andP →lower Q for a
lower-level reduction. The reflexive and transitive closures are denoted by⇒top, ⇒lower
respectively.

Lemma 4.6. LetP, Q beLm
iī

processes. IfP ⇒lower→top Q thenP →top⇒lower Q.

Proof. Straightforward and omitted.�

Let us writeP ↘ Q if P ≡ m[ Q ] | R for someR.

Lemma 4.7. Let P be aLm
iī

process. Suppose that P has an infinite computationP →�.
ThenP ⇒top↘→�.

Proof.The computationP →� will have finitely many→top reductions. Using Lemma4.6
we can transform it into another infinite computation with all→top reductions carried out
at the beginning:P ⇒top P ′ →�

lower. ThenP ′ must have at least one top-level ambient,
and there must be an infinite computation inside one of these top-level ambientsm[ Q ]. So
P ⇒top P ′ ↘ Q →� as required. �

Proof of Proposition 4.5, Method 2.Let P be anLm
iī

process. From Lemma4.7, we see
that if P has an infinite→ computation thenP has an infinite⇒top↘ computation. To
show that infinite⇒top↘ computations are impossible, we assign multisets to processes
and define an ordering on these multisets which is well-founded and strictly decreasing with
respect to⇒top↘.

For a completely formal proof we would have to develop an apparatus for labelling
ambients and members of multisets in order to make precise the correspondence between
the two. We have suppressed all of this in the interests of readability.

Let P0, . . . , Pi, . . . be an infinite⇒top↘ computation (i.e.Pi →top Pi+1 or Pi ↘ Pi+1,
and there are infinitely manyi for whichPi ↘ Pi+1). We assign to eachPi a finite multiset
Si . Its elements will be ordered pairs(d, T ) consisting of a natural numberd and a finite
multisetT of natural numbers. The multisetSi will satisfy the following:
(1) For each(d, T ) ∈ Si , and for eachd ′ ∈ T we haved ′ < d.
(2) The numbers inSi are precisely all degrees of unguarded ambients inPi : there is a bijec-

tive correspondence which maps each unguarded ambientm[ Q ]of Pi tod �cd(m[ Q ])
in Si , either as the left-hand component of some(d, T ) ∈ Si or as somed ∈ T where
(d ′, T ) ∈ Si .
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(3) If m[ Q ] occurs at the top level inPi , then m[ Q ] corresponds tod in some
(d, T ) in Si .

(4) If m[ R ] corresponds tod ′ ∈ T for some(d, T ) in Si , thenm[ R ] is unguarded inside
somem[ Q ] corresponding tod.

We createS0 as follows: For each unguarded ambientm[ P ′ ] of degreed contained inP0,
we add the pair(d, ∅) to S0. Plainly properties (1–4) are established.

In the computation there are two kinds of reductions:→top and↘. Suppose thatPi →top
Pi+1. A →top reduction consists of an ambientm[ Q1 ] of degreed1 entering an ambient
m[ Q2 ] of degreed2. To these ambients there correspond elements(d ′

1, T1) and(d ′
2, T2) in

Si , with d1�d ′
1 andd2�d ′

2. (Since we are doing a top-level reduction the two ambients
are represented in the first elements of the pairs ofSi , by (3).) The→top reduction will
produce children ofm[ Q1 ] of degree< d1; we add their degrees toT1. The reduction will
also produce children ofm[ Q2 ] of degree< d2; we add their degrees toT2. In this way we
createSi+1. It is easy to check that properties (1–4) are established forSi+1.

Now suppose thatPi ↘ Pi+1. The↘ reduction selects a top-level ambientm[ Pi+1 ],
and keepsPi+1 while discarding its enclosing ambient and any other top-level processes
in parallel withm[ Pi+1 ]. Suppose thatm[ Pi+1 ] is of degreed0 and corresponds to the
element(d ′

0, T0) of Si . First we remove fromSi all pairs corresponding to the discarded
top-level processes and their contents. Note that by (3) and (4), if any member of some
(d, T ) is to be removed, then so are all the remaining members. Now we remove(d ′

0, T0)

from Si , and for eachd ∈ T0 we add(d, ∅) to Si . Note that eachd < d0�d ′
0. In this way

we createSi+1.
Properties (1), (2) and (4) are clearly established forSi+1. As to (3), suppose thatm[ R ]

is a top-level ambient inPi+1. Suppose thatm[ R ] corresponds tod ′ ∈ T for some(d, T )

in Si+1. Then this(d, T ) was already inSi . Therefore by (4) forSi , m[ R ] was inside some
m[ Q ] corresponding tod. The only way thatm[ R ] can be top-level inPi+1 is for m[ Q ]
to bem[ Pi+1 ], which means thatm[ R ] corresponds tod ′ in some(d ′, ∅) in Si+1. Thus
we have established (3).

Recall the well-founded ordering on multisets of Definition4.2 and Proposition4.3.
If we consider just the first members of the pairs in the multisetsSi we see that a→top
reduction leaves the set unchanged, while a↘ reduction removes one element and replaces
it with a finite set of smaller elements (it also removes zero or more elements completely,
corresponding to the discarded top-level processes). So each⇒top↘ reduction takes us
down in the� ordering. By well-foundedness of� there is no infinite⇒top↘ computation,
and thus no infinite→ computation. �

Theorem 4.8. Liīp is terminating.

Proof. By Lemma4.4and Proposition4.5. �

4.2. Termination without

It is also the case that a language without as its only capability is terminating. LetLo
be the following language:

P ::= 0 | n[ P ] | P | Q | out n.P | ! out n.P | �n P.
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Notice thatLo is got fromLio (Section3.5) by removing thein capability and (in order
to sharpen the next theorem) adding restriction. We shall show thatLo is terminating
(Theorem4.14below).

The strategy we adopt is as follows: Firstly, as with Theorem4.8, it suffices to show
that the sublanguage without restriction, and where all names are identified, is terminating.
We associate a finite multiset of natural numbers with each process and show that each
reduction produces a smaller multiset in the well-founded ordering� of Definition4.2. As
the multiset is sensitive to the number of nil processes and unfoldings of replications, we
have to use a non-standard notion of reduction.

We start by eliminating restriction. Letm ∈ N be a single designated name. LetLm
o be

the following language:

P ::= 0 | m[ P ] | P | Q | out m.P | ! out m.P.

We define an encoding[[−]] from Lo to Lm
o as follows:

[[0]] df= 0 [[out n.P ]] df= out m.[[P ]]
[[n[ P ]]] df= m[ [[P ]] ] [[ ! out n.P ]] df= ! out m.[[P ]]
[[P | Q]] df= [[P ]] | [[Q]] [[�n P ]] df= [[P ]].

Lemma 4.9. Let P, Q ∈ Lo.
(1) If P ≡ Q then[[P ]] ≡ [[Q]].
(2) If P → Q then[[P ]] → [[Q]].

Proof. Straightforward and omitted.�

We associate a finite multiset of natural numbers with each process ofLm
o . Each element

in the multiset measures the number of ambients working from an occurrence of0outwards.

ms(0)
df= {0} ms(out m.P )

df= ms(P )

ms(m[ P ]) df= {k + 1 : k ∈ ms(P )} ms( ! out m.P )
df= ms(P )

ms(P | Q)
df= ms(P ) ∪ ms(Q).

Notice that this definition will produce different multisets for processes which are struc-
turally congruent. For instance,ms(m[0 ]) = {1}, while ms(m[0 | 0 ]) = {1, 1}. Also,
ms( ! out m.0) = {0}, while ms(out m.0 | ! out m.0) = {0, 0}. We therefore replace≡ by
commutative-associative structural congruence≡ca (Section2), where the rules0 | P ≡ P

andP ≡ P | ! P are disallowed.
Having adjusted structural congruence, we also need to change to a non-standard reduc-

tion relation→′. We replace the usual rule (Out) by the following:

(Out1) m[ m[ out m.P | Q ] | R ] →′ m[ P | Q ] | m[ R ]
(RepOut)m[ m[ ! out m.P | Q ] | R ] →′ m[ P | ! out m.P | Q ] | m[ R ].

The rule (RepOut) ensures that replication is only unfolded as needed. Since we no longer
can add nil processes using structural congruence, the two new rules also come with variants
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whereQ is not present, and whereR is not present (and we write0 instead ofR in the
derivative). The remaining rules are:

P →′ P ′

n[ P ] →′ n[ P ′ ]
P →′ P ′

P | Q →′ P ′ | Q

P ≡ca P ′ P ′ →′ Q′ Q′ ≡ca Q

P →′ Q
.

We next show that we have not removed any possibilities for computation by changing the
reduction relation.

Lemma 4.10. LetP, Q beLm
o processes.

(1) If P ≡→′ Q thenP →′≡ Q.
(2) If P → Q thenP →′≡ Q.

Proof. Lengthy and omitted. It is similar to[25, Lemma 1.4.15]and[8, Propositions 4.11,
4.12], but in those cases a labelled transition system was being related to an unlabelled one,
whereas here we are relating two unlabelled transition systems.�

Lemma 4.11. Let P be anLm
o process. If P has an infinite→ computation, then P has an

infinite→′ computation.

Proof. Suppose that there is an infinite computation

P = P0 → · · · → Pi → · · · .

We create an infinite computationP = P ′
0 →′ · · · →′ P ′

i →′ · · · , with Pi ≡ P ′
i (all i),

definingP ′
i by induction as follows. Suppose thatP = P ′

0 →′ · · · →′ P ′
i with P ′

i ≡ Pi .
We havePi → Pi+1. Hence by Lemma4.10(2) there isQ such thatPi →′ Q ≡ Pi+1.
ThereforeP ′

i ≡ Pi →′ Q. By Lemma4.10(1) there isP ′
i+1 such thatP ′

i →′ P ′
i+1 ≡ Q.

ClearlyP ′
i+1 ≡ Pi+1, andP ′

i+1 is as required. �

Now we establish that→′ reductions take us down in the≺ multiset ordering of
Definition4.2.

Lemma 4.12. LetP, Q beLm
o processes, and letC{•} be anLm

o context.
(1) If ms(P ) = ms(Q) thenms(C{P }) = ms(C{Q}).
(2) If ms(P ) � ms(Q) thenms(C{P }) � ms(C{Q}).
(3) If P ≡ca Q thenms(P ) = ms(Q).
(4) If P →′ Q thenms(P ) � ms(Q).

Proof. (1) and (2) are by structural induction on contexts. (3) uses (1), and is straightforward.
(4) uses (2) and (3), and is by induction on the derivation ofP →′ Q. As an example,
consider the rule (RepOut) in the case whereQ andRare omitted:

m[ m[ ! out m.P ] ] →′ m[ P | ! out m.P ] | m[0 ]
We have

ms(m[ m[ ! out m.P ] ]) = {k + 2 : k ∈ ms(P )}
ms(m[ P | ! out m.P ] | m[0 ]) = {k + 1 : k ∈ ms(P ) ∪ ms(P )} ∪ {1}.
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Clearly {k + 2 : k ∈ ms(P )} � {k + 1 : k ∈ ms(P ) ∪ ms(P )} ∪ {1}. We omit further
details. �

Proposition 4.13. (1) (Lm
o , →′) is terminating.

(2) (Lm
o , →) is terminating.

Proof.
(1) This follows from Lemma4.12and the well-foundedness of� (Proposition4.3).
(2) This follows from (1) and Lemma4.11. �

Our main result now follows:

Theorem 4.14.Lo is terminating.

Proof. This follows from Proposition4.13(2) and Lemma4.9(2). �

Remark 4.15. From the proof of Lemma4.12(4) we see that a single reductionP →′ Q

leads to at most 3 smaller items being substituted for each element�2 of ms(P ). An
example is

m[ m[ ! out m.0 ] ] →′ m[0 | ! out m.0 ] | m[0 ] ,

where{2} becomes{1, 1, 1}. Thus if anLm
o process has�k 0s and�k ambients, its multiset

will be bounded by{k, . . . , k} (k copies ofk), and the maximum length of a computation
will be bounded byk.3k−1. This upper bound also applies to(Lm

o , →) computations by the
proof of Lemma4.11, and to(Lo, →) computations by Lemma4.9. We obtain that if anLo
process has�k operators then any computation has length bounded byk.3k−1. This bound
can no doubt be considerably improved.

Notice that wecanhave infinite computations in the language where we add co-capability
out to Lo, in view of the counterexample

n[ n[ out n ] | ! out n.n[ out n ] ] .

This is equally the case when the co-capability is located at the upper level[17]:

n[ n[ out n ] ] | ! out n.n[ n[ out n ] ]
With “push” as the only capability we can have infinite computations, e.g.

n[ n[ ] | ! push n.n[ ] ] .

Remark 4.16. If we combine replication with theopen capability we can create non-
terminating processes such asn[ ] | ! open n.n[ ]. Busi and Zavattaro[8] showed that ter-
mination is decidable for processes built with replication andopen (see Theorem5.21in
Section5).
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5. Fragments of AC with decidable termination

We have seen (Theorem3.10) that pure Boxed Ambients is Turing-complete. In the
previous section we saw that the fragments with just one movement capability (eitherin or
out), and replication just applied to that capability, are terminating. In this section we look
at the same fragments, but extended with full replication. We shall show that termination is
decidable in the fragments within (respectivelyout) and full replication. In the case ofout,
we shall be able to go further and show that the fragment without, open and full (unboxed)
recursion has decidable termination. In the next subsection we start with this result, which
builds on the work of Busi and Zavattaro.

Definition 5.1. We shall say thattermination is decidablein a language(L, →) if, given
any processP of L, it is decidable whetherP has an infinite computation.

Remark 5.2. We saw in Section3.1that having decidable termination does notper seimply
that a language is Turing-incomplete. Nevertheless, whenever we showed that a language
was Turing-complete, it was also the case that termination was undecidable. This enables
us to achieve a separation between such languages and the ones discussed in this section.
See Remark5.22below.

5.1. Decidability forout andopen

Recall that Busi and Zavattaro[8] showed that pure MA, with no movement capabilities
and with (unboxed) recursion rather than replication, is Turing-complete (Theorem3.5).
They also showed that if one replaces recursion by what they callunrestricted recursionthen
termination is decidable. (Recursion is said to be unrestricted if, for each processrec X.P ,
no free occurrence ofX in P occurs inside a subprocess of the form�n Q.) Their language,
which we shall callLop

�,ur , is defined by

P ::= 0 | n[ P ] | P | Q | open n.P | �n P | X | rec X.P

where recursion is unboxed and unrestricted.

Theorem 5.3(Busi and Zavattaro[8] ). Termination is decidable forLop
�,ur .

In particular, termination is decidable both in the sublanguage withopen, restriction and
replication, and in the sublanguage withopen and recursion (but not restriction).

The proof of Theorem5.3 depends on the theory of well-quasi-orderings and
well-structured transition systems[12]. We briefly review the relevant definitions and
results.

Definition 5.4. A quasi-ordering(qo) is a reflexive and transitive binary relation. Awell-
quasi-ordering(wqo) is a qo(X, �) such that for every infinite sequencex0, . . . , xi, . . . of
members ofX, there existi, j ∈ N such thati < j andxi �xj .
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Definition 5.5. A transition system(S, →) is a set of statesS together with a transition

relation→. For s ∈ S let Succ(s)
df= {t : s → t} and letDeriv(s)

df= {t : s ⇒ t}. (S, →) is
finite-branchingif for all s ∈ S, Succ(s) is finite.

Definition 5.6. A structure(S, →, �) is awell-structured transition system (with strong
compatibility)if
• (S, →) is a transition system, and
• � is a wqo onS, and
• � is upwards compatible with→, meaning that ifs → t ands �s′ then there existst ′

such thats′ → t ′ andt � t ′.

Theorem 5.7(Finkel and Schnoebelen, special case of[12, Theorem 4.6]). Let(S,→, �)

be a well-structured transition system(with strong compatibility) where� is decidable and
Succ(s) is finite and computable in s. Then it is decidable, givens ∈ S, whether there is an
infinite→ computation starting from s.

In order to apply this theorem toLop
�,ur , Busi and Zavattaro firstly need to show that

Succ(P ) is computable. The problem is that the standard reduction relation is not finite-
branching, since it allows recursions to be unfolded without limit (using structural congru-
ence). They therefore define a different reduction relation using a labelled transition system,
which only allows unfolding as required to perform a reduction.

Next they define a multiset-style ordering� on processes, under which, for example,
P�P | Q. In showing that� is a wqo, the essential ingredients are:
(1) Bounded depth: there is a bound on the depth of all derivatives of a process (in terms

of nesting of ambients and restrictions), and
(2) Finite name-space: the set of names used in all derivatives of a process is finite.
The bounded depth property comes straightforwardly from the facts that recursion is un-
boxed and that there are no movement capabilities. The finite name-space property comes
from the fact that recursion is unrestricted, so that it is never necessary to extrude the scope
of a restriction, with the renaming that this entails.

We wish to extend Busi and Zavattaro’s work by applying it to a fragment with theout
capability. The starting point is to note that anout reduction can never increase depth.
Therefore we can fulfil the bounded depth property. In order to fulfil the finite name-
space property we find it necessary to disallow restriction. The reason is that with ambient
movement it becomes essential to extrude scopes, and so we may need to create unboundedly
many new names during a computation to avoid clashes. This is true even if we reduce the
language by replacing unrestricted recursion with replication (any replication can be seen
as an unrestricted recursion, but not, of course, vice versa). Consider for example

m[ ! �n (n[ out m ] | n[ ]) ]
→ �n1 (n1[ ] | m[ n1[ ] | ! �n (n[ out m ] | n[ ]) ])
→ �n1n2 (n1[ ] | n2[ ] | m[ n1[ ] | n2[ ] | ! �n (n[ out m ] | n[ ]) ])
. . .

There is no way to make the scopes ofn1, n2, . . . disjoint, and so the computation uses
infinitely many names.
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We shall show that termination is decidable for the following language, which we
call Lop

o :

P ::= 0 | n[ P ] | P | Q | open n.P | open n.P

| out n.P | out n.P | push n.P | X | rec X.P.

(Recursion is unboxed inLop
o .) The rest of this subsection is devoted to proving this result

(Theorem5.21below).
First we need to change from standard reduction to one which is finite-branching. With

ambient movement it is problematic to use labelled transition systems (as did Busi and
Zavattaro). Therefore we go directly to a finite-branching notion of reduction. We shall
define what we callunfolding reduction, which means that we unfold each recursion exactly
once for each reduction.

Looking at the rules for→ given in Section2, we see that the infinite branching comes
from the following two rules of structural congruence:

0 | P ≡ P rec X.P ≡ P {rec X.P/X}.

The first allows indefinitely many nil processes to accumulate, while the second allows
us to unfold recursions indefinitely many times, even for a single reduction. We therefore
remove these rules from structural congruence, and use commutative-associative structural
congruence≡ca (Section2). Notice that this is exactly what we used in Section4.2when
proving thatLo is terminating. In fact, the non-standard notion of reduction we defined
there is finitely branching, though we did not require that for the proof.

Next we define a non-standard notion of reduction→ca for L
op
o . This has the same rules

as normal reduction, with two changes:
(1) Much as when we defined a non-standard reduction in Section4.2, we include variants

of the rules (SafeOpen), (SafeOut) and (Push) which allow for the possible absence
of processes in parallel with capabilities. This is unnecessary with standard reduction
where the law0 | P ≡ P is available.

(2) We replace≡ by ≡ca in rule (Str):

P ≡ca P ′ P ′ →ca Q′ Q′ ≡ca Q

P →ca Q
.

Since we have removed the rule of structural congruence which allows unfolding of re-
cursions, before performing a reduction we unfold each recursion exactly once, producing
what we call theunfoldingof a process.

Definition 5.8. The (single)unfoldingunf(P ) of anL
op
o termP is defined as follows:

unf(rec X.P )
df= unf(P ){rec X.P/X} ,

with unf(P ) being defined homomorphically for all other operators ofL
op
o .
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As an example, let

P
df= out n.(X | rec Y.Q) Q

df= X | Y | n[ ].
Thenunf(rec X.P ) = out n.(rec X.P | (rec X.P | rec Y.Q | n[ ])).

The unfolding of a process allows every possible immediate reduction to go ahead. The
fact that a single unfolding is enough depends on the particular operators ofL

op
o . If we were

dealing within, then for instancerecX.(X | m[ in m ]) needs to be unfolded twice to expose
the redex. The difference betweenin andout is that anin-redex involves two operators of
the same kind (namely, ambients) at the same depth. Although anout-redex involves two
ambients, they are at different levels (one being inside the other). Since recursion is unboxed,
if an out-redex is exposed by a second unfolding, it (or an essentially identical redex) must
have been exposed by the first unfolding.

Definition 5.9 (Unfolding Reduction). P →u Q iff unf(P ) →ca Q.

We must show that→u is finite-branching, and that a process has an infinite→-comput-
ation iff it has an infinite→u-computation. First we prove some lemmas. It is convenient
to split structural congruence≡ into two component notions:

Definition 5.10. (1) Let ≡nca be the least congruence onL
op
o terms generated by the fol-

lowing laws:

0 | P ≡nca P P | Q ≡nca Q | P (P | Q) | R ≡nca P | (Q | R).

(2) Let� be the least precongruence onL
op
o terms generated by

rec X.P�P {rec X.P/X}.

Thus≡nca is ≡ca with the law for the nil process added. We get� by treating the law
recX.P ≡ P {recX.P/X} as a rewrite rule. Any derivation ofP ≡ Q is a chain of instances
of ≡nca and� and its inverse�.

Lemma 5.11. LetP, Q, R, S beL
op
o terms and X a process variable.

(1) If P ≡nca Q andR ≡nca S thenP {R/X} ≡nca Q{S/X}.
(2) If P�Q andR�S thenP {R/X}�Q{S/X}.

Proof. Straightforward and omitted.�

Lemma 5.12. Let P be anLop
o term. ThenP�unf(P ).

Proof. By structural induction on terms. All cases are immediate except for recursion. So
suppose thatP�unf(P ). We must show thatrec X.P�unf(rec X.P ). Now rec X.P�P

{rec X.P/X} and

unf(rec X.P ) = unf(P ){rec X.P/X} .

So the result follows from Lemma5.11. �
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Lemma 5.13. LetP, Q beL
op
o terms.

(1) If P ≡nca Q thenunf(P ) ≡nca unf(Q).
(2) If P�Q thenunf(P )�unf(Q).

Proof.
(1) Structural induction on terms for each of the three laws of≡nca , using Lemma5.11.
(2) By induction on the derivation ofP�Q. The only case which is not immediate is

recursion. Suppose thatP = recX.P ′ andP�Q is got by a single unfolding. There are
two possibilities forQ. EitherQ is got by unfolding the outermost recursion, or it is got
by unfolding some recursion insideP ′. In the first case we haveQ = P ′{P/X}. Then
unf(P ) = unf(P ′){P/X} andunf(Q) = unf(P ′){unf(P )/X}. So unf(P )�unf(Q)

by Lemma5.11. In the second case we haveQ = rec X.Q′ with P ′�Q′ in one
step. Thenunf(Q) = unf(Q′){Q/X}. By inductive hypothesis,unf(P ′)�unf(Q′), and
unf(P )�unf(Q) by Lemma5.11. �

Lemma 5.14. LetP, Q beL
op
o processes.

(1) If P ≡nca→ca Q thenP →ca≡nca Q.
(2) If P�→ca Q thenP →ca�Q.
(3) If P�→u Q thenP →u≡ Q.
(4) If P ≡→u Q thenP →u≡ Q.
(5) P → Q iff P →u≡ Q.

Proof.
(1) Straightforward and omitted.
(2) Suppose thatP�P ′ in a single step. Then there is a contextC{•} such thatP ′ =

C{rec X.R} andP = C{R{rec X.R/X}}. SupposeP ′ →ca Q. ThenQ = C′{rec X.R}
for someC′{•}. FurthermoreP →ca Q′ whereQ′ = C′{R{rec X.R/X}}. Clearly
Q′�Q as required.

(3) Notice that the converse of (2) does not hold: it is not the case that ifP�→ca Q then
P →ca�Q, since in general unfolding recursions can create new redexes.

The idea is that if a recursion has already been unfolded once, unfolding a second
time does not give any new redexes.

Suppose thatP�P ′ in a single step andunf(P ′) →ca Q. Then there is a context
C{•} such thatP = C{R}, with R = rec X.R1, andP ′ = C{R′}, with R′ = R1{R/X}.

Now unf(C{R}) = �R(C′{unf(R)}) for some contextC′{•}, where�R assigns re-
cursive terms to any variables bound by recursion inC{•}. Also unf(C{R′}) = �R′
(C′{unf(R′)}), where we have�R(Y )��R′(Y ) for any variables bound by recursion
in C{•}.

As a simple example, letC{•} df= rec Y.(Y | •). Thenunf(C{R}) = �R(Y | unf(R)),
where�R(Y ) = C{R}, andunf(C{R′}) = �R′(Y | unf(R′)), where�R′(Y ) = C{R′}.

We haveunf(R1) ≡ca Xi | Ra | Rc | Rr | Rn , wherei �0, Ra is the parallel
composition of ambient terms,Rc is the parallel composition of capability terms of
the formM.P , Rr is the parallel composition of recursive terms, andRn is the parallel
composition of nil processes. To be precise, any or all ofRa , Rc , Rr , Rn may be
absent fromunf(R1). Note thatXdoes not occur free inRa , since recursion is unboxed.
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Hence:

unf(R) = unf(R1){R/X}
≡ca Ri | Ra | Rc{R/X} | Rr{R/X} | Rn,

unf(R′) = unf(R1{R/X})
= unf(R1){unf(R)/X}
≡ca (unf(R))i | Ra | Rc{unf(R)/X} | Rr{unf(R)/X} | Rn.

Notice that inunf(R′) there are nowi + 1 copies ofRa. Also there arei copies of
Rc{R/X}.

Now we look at how the reductionunf(P ′) = �R′(C′{unf(R′)}) →ca Q can arise.
Inspection of the redexes foropen, out andpush shows that withinunf(R′) at most
one ambient and one capability can be involved. Also the only possible movement is
of an ambient term, which does not involveunf(R). The subtlety is that the capability
involved may come from eitherRc{R/X} or Rc{unf(R)/X}. Working up to≡, we can
assume that the ambient term used is the rightmost one. Also, if the capability term
used is aRc{R/X}, we can replace it byRc{unf(R)/X} and get a result equivalent
under≡, using the fact thatR ≡ unf(R) by Lemma5.12. Hence

unf(P ′) →ca �R′(C′′{unf(R)}) ≡ Q ,

for some contextC′′{•}. This reduction can be mimicked by

unf(P ) →ca �R(C′′{R}) .

Now �R′(C′′{unf(R)}) ≡ �R(C′′{R}). HenceP →u≡ Q as required.
(4) Follows from (1), (2) and (3), using Lemma5.13.
(5) (⇒) By induction on the derivation ofP → Q, using (4).

(⇐) SupposeP →u≡ Q. Then by Lemma5.12and the definition of→u,P�→ca≡ Q.
HenceP → Q. �

Lemma 5.15. Let P be anLop
o process. Then P has an infinite→-computation iff P has an

infinite→u-computation.

Proof. (⇒) Much the same as Lemma4.11, using Lemma5.14.
(⇐) If there is an infinite→u-computationP →u P1 →u · · · , thenP → P1 → · · · is an
infinite →-computation, by Lemma5.14(5). �

Lemma 5.16. (1) For anyL
op
o term P, {Q : P ≡ca Q} is finite.

(2) →u is finite-branching, andSucc(P ) is computable in P.

Proof. By structural induction on processes. Omitted.�

Now we follow Busi and Zavattaro and define an ordering� on processes, which will be
a wqo:
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Definition 5.17 (cf. Busi and Zavattaro[8, Definition 4.17]). Let P, Q beL
op
o processes.

Let P�Q iff
(1) Q ≡ca P | R for someR, or
(2) P ≡ca P1 | n[ P2 ] andQ ≡ca Q1 | n[ Q2 ], with P1�Q1 andP2�Q2.

Definition 5.18. Theambient nesting depthof anL
op
o term is defined as follows:

and(0)
df= 0 and(M.P )

df= and(P )

and(n[ P ]) df= 1 + and(P ) and(X)
df= 0

and(P | Q)
df= max(and(P ), and(Q)) and(rec X.P )

df= and(P )

Reductions do not increase depth:

Lemma 5.19. (1) LetP, Q beL
op
o terms. IfP ≡ Q thenand(P ) = and(Q).

(2) LetP, Q beL
op
o processes. IfP →u Q thenand(P )�and(Q).

Proof. Straightforward and omitted. Note that the proof depends on recursion being un-
boxed. �

Proposition 5.20. Let P be anLop
o process. Then(Deriv(P ), →u, �) is a well-structured

transition system with decidable� and computableSucc(−).

Proof. (Sketch) We show that� is a decidable wqo onDeriv(P ) (using Lemma5.19,
which gives us the Bounded Depth property), and that it is upwards compatible with→u.
We omit the details, referring the reader to the proof of[8, Theorem 4.29]. We know from
Lemma5.16thatSucc(−) is computable. �

We can now prove the main theorem of this subsection:

Theorem 5.21.Termination is decidable forLop
o .

Proof. Termination of →u-computations is decidable forLop
o by Theorem5.7 and

Proposition5.20. Therefore by Lemma5.15termination of→-computations is decidable
for L

op
o . �

Remark 5.22. We know that termination is undecidable forLio (see proof of
Theorem3.10). It follows from Theorem5.21that there can be no embedding[[−]] from
Lio into L

op
o which respects termination, in the sense that for any processP of Lio, P has a

non-terminating computation iff[[P ]] has a non-terminating computation.

5.2. Decidability forin

We now turn to showing that termination is decidable for a language with thein capability
and full replication (rather than replication on capabilities, as considered in Section4). We
start by noting that even such a simple process as! n[ in n ] can have a computation with
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unbounded ambient nesting depth. The proof method of Theorem5.21 is therefore not
available.

Let Lin be the following language:

P ::= 0 | n[ P ] | P | Q | in n.P | ! P

We shall show that termination is decidable forLin (Theorem5.34below). Our strategy is
first to remove all replications except those on capabilities and ambients. Next we define a
non-standard notion of reduction which detects any possible divergence and terminates the
computation immediately.

Let L′
in be the following language:

P ::= 0 | n[ P ] | P | Q | in n.P | ! n[ P ] | ! in n.P .

We see thatL′
in is the sublanguage ofLin got by requiring that replication can only be

applied to ambients andin. Note that ifP is a process ofL′
in andP → Q thenQ is also a

process ofL′
in.

Define an encoding[[−]] from Lin to L′
in homomorphically except for replication, where

we let

[[ !0]] df= 0 [[ ! (P | Q)]] df= ! [[P ]] | ! [[Q]] [[ ! ! P ]] df= ! [[P ]]
[[ ! n[ P ]]] df= ! n[ [[P ]] ] [[ ! in n.P ]] df= ! in n.[[P ]].

We next define a non-standard notion of structural congruence≡! on Lin. It is the least
congruence generated by the usual laws of standard structural congruence appropriate for
the operators ofLin (Section2), together with the following:

!0 ≡! 0 ! ! P ≡! ! P ! (P | Q) ≡! ! P | ! Q.

These laws are to be found in for instance[14].

Lemma 5.23. For anyLin process P, P ≡! [[P ]].

Proof. By structural induction onLin processes. Omitted.�

Lemma 5.24. For anyLin processesP, Q, if P ≡! → Q thenP →≡! Q.

Proof. By induction on the derivation of≡! . Omitted. �

Lemma 5.25. Let P be anLin process. Then P has an infinite computation iff[[P ]] has an
infinite computation.

Proof. Follows immediately from Lemmas5.23and5.24. �

To decide whether a processP of L′
in has a non-terminating computation, we shall de-

fine a non-standard reduction relation→D which is finite-branching and which traps non-
termination finitely, so that every computation terminates.
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As in Section5.1, in order to achieve finite branching we use commutative-associative
structural congruence≡ca instead of standard structural congruence≡. Since we omit
the rules for nil and replication we compensate with extra reduction rules, much as in
Section4.2. These ensure that replications are unfolded once as needed:

(In1) n[ in m.P | Q ] | m[ R ] →D m[ n[ P | Q ] | R ],
(In2) n[ ! in m.P | Q ] | m[ R ] →D m[ n[ P | ! in m.P | Q ] | R ],
(In3) n[ in m.P | Q ] | ! m[ R ] →D m[ n[ P | Q ] | R ] | ! m[ R ],
(In4) n[ ! in m.P | Q ] | ! m[ R ] →D m[ n[ P | ! in m.P | Q ] | R ] | ! m[ R ].

Also, because we cannot add in nil using structural congruence to match a redex, for each
of the above four rules there is another rule which is the same except thatQ is not composed
in parallel. We omit these rules.

(Amb)
P →D P ′

n[ P ] →D n[ P ′ ] (Str)
P ≡ca P ′ P ′ →D Q′ Q′ ≡ca Q

P →D Q

(Par)
P →D P ′

P | Q →D P ′ | Q
.

We introduce a new constantDIV which represents divergence, and which can occur only
on the right-hand side of→D. Thus→D⊆ L′

in × (L′
in ∪{DIV}). We add the following rules

which trap divergence caused by replicated ambients being able to perform repeatedins:

(InDiv1) ! n[ in m.P | Q ] | m[ R ] →D DIV,

(InDiv2) ! n[ ! in m.P | Q ] | m[ R ] →D DIV,

(InDiv3) ! n[ in m.P | Q ] | ! m[ R ] →D DIV,

(InDiv4) ! n[ ! in m.P | Q ] | ! m[ R ] →D DIV,

(InDiv5) ! n[ in n.P | Q ] →D DIV,

(InDiv6) ! n[ ! in n.P | Q ] →D DIV.

As previously, there are another six rules like the above but withQ missing. Another form
of divergence associated with replicated ambients is trapped by the next rule:

(AmbDiv)
P →D P ′

! n[ P ] →D DIV
.

Finally we add four rules to propagate derivations ofDIV:

(DivAmb)
P →D DIV

n[ P ] →D DIV
(DivRep)

P →D DIV
! n[ P ] →D DIV

(DivPar)
P →D DIV

P | Q →D DIV
(DivStr)

P ≡ca P ′ P ′ →D DIV
P →D DIV

.

Notice thatDIV has no reductions. We complete the definition of→D by stipulating that
DIV takes priority over any derivative inL′

in:
• If P →D DIV thenP �→D Q for all Q ∈ L′

in.
We need this condition, because otherwise we could have infinite→D computations, which

we wish to avoid. An example isP
df= m[ in m ] | ! m[ in m ]. We haveP →D DIV, but
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without the priority condition we would also have the infinite computationP →D m[ m[ ] |
in m ] | ! m[ in m ] →D · · · .

Lemma 5.26. (L′
in, →D) is finite-branching and, givenP ∈ L′

in, we can effectively com-
pute its successors under→D.

Proof. Straightforward and omitted.�

The constantDIV represents the finite detection of divergence. We see from the various
rules forDIV that the possible causes of divergence are all very simple. What is not so
obvious is that the rules have indeed trapped all possible causes of divergence; there might
be deeper or more elaborate causes. To rule this out, we shall need to show that(L′

in, →D) is
terminating, and this is where the main work will lie in proving that termination is decidable
for Lin.

First we establish the relationship between→ and→D:

Lemma 5.27. LetP, Q beL′
in processes.

(1) If P →D Q thenP → Q.
(2) If P →D DIV thenP →�.
(3) If P ≡→D DIV thenP →D DIV.
(4) If P ≡→D Q thenP →D≡ Q.
(5) If P → Q then eitherP →D≡ Q or P →D DIV.

Proof.
(1) Straightforward and omitted.
(2) Any reductionP →D DIV must arise from one of the twelve (InDiv) rules, or from

(AmbDiv). In each case it is easy to construct an infinite→-computation.
(3) By induction on the derivation of≡. The idea is that the derivation ofDIV is unaffected

by whether replications are folded or unfolded, since the various rules forDIV work
directly on replicated processes. We omit the details.

(4) By induction on the derivation of≡. Much as in the previous item, there is no need
to unfold replications in order to obtain reductions, since we have rules (In2)-(In4) as
well as the standard (In1). We omit the details.

(5) By induction on the derivation ofP → Q, using (3) and (4). �

Having obtained the desired finite-branching transition system→D, we now complete the
proof that termination for(L′

in, →) is decidable by showing that(L′
in, →D) is terminating.

We adapt Method 2 for showing thatLm
iī

is terminating (Section4.1).

As in Section4.1, let us writeP →D
top Q for a top-level reduction (one that does not use

the rule (Amb)) andP →D
lower Q for a lower-level reduction (one that does use (Amb)).

We do not make this distinction forP →D DIV reductions. The next lemma is similar to
Lemma4.6.

Lemma 5.28. LetP, Q beL′
in processes. IfP ⇒D

lower→D
top Q thenP →D

top⇒D
lower Q.
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Proof. Straightforward and omitted.�

Lemma 5.29. (L′
in, →D

top) is terminating.

Proof. Take anyL′
in processP. We have

P ≡ca P cap | ∏
i∈I

mi[ Qi ] | ∏
j∈J

! nj [ Rj ] | ∏
k∈K

0 ,

whereP cap is the capability component ofP (see Section4.1). Any →D
top computation

starting fromPwill be finite; in fact, it can have no more than|I | reductions. This is because
eachmi[ Qi ] can perform at most one top-levelin; also at no stage in the computation can we
have any top-level reduction where an ambient spun-off from some! nj [ Rj ] enters another
ambient (as this would implyP →D DIV, which would prevent any→D

top reductions). �

As in Section4.1, let us writeP ↘ Q if P ≡ m[ Q ] | R for someR. The next lemma is
similar to Lemma4.7.

Lemma 5.30. Let P be anL′
in process. Suppose that P has an infinite computation

P (→D)�. ThenP ⇒D
top↘ (→D)�.

Proof. The proof is on the lines of that of Lemma4.7. SupposeP (→D)�. By Lemma
5.29 the computationP (→D)� will have finitely many→D

top reductions. Using Lemma

5.28we can transformP (→D)� into another infinite computation with all→D
top reductions

carried out at the beginning:P ⇒D
top P ′(→D

lower)
�. ThenP ′ must have at least one top-

level (unreplicated) ambient, and there must be an infinite computation inside one of these
top-level ambientsr[ P ′′ ]. SoP ⇒D

top P ′ ↘ P ′′(→D)� as required. �

Recall that in Section4.1 we defined thecapability degreeof an ambient. We need to
adapt that definition to the present languageL′

in, where we have replicated ambients. First
we define thecapability and replicated ambient depthof a process:

crad(0)
df= 0 crad(in n.P )

df= crad(P ) + 1

crad(n[ P ]) df= crad(P ) crad( ! n[ P ]) df= crad(P ) + 1

crad(P | Q)
df= max(crad(P ), crad(Q)) crad( ! in n.P )

df= crad(P ) + 1.

Note that this definition increases depth for capabilities and replicated ambients. Next we
define thedegreeof an ambient or replicated ambient:

degree(n[ P ]) df= crad(P cap) degree( ! n[ P ]) df= crad( ! n[ P ]).
The idea is that the degree of an ambient is unaffected by other ambients entering. Also,
if an ambient unleashes “child” ambients or replicated ambients inside itself as a result of
entering another ambient, such children will have lower degree. Moreover, if a replicated
ambient ! n[ P ] spins off n[ P ] then n[ P ] and all unguarded ambients and replicated
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ambients insiden[ P ] will have lower degree than! n[ P ]. Note that the degree of an
ambient can decrease as a result of that ambient performing anin.

Lemma 5.31. (L′
in, →D) is terminating.

Proof. Let P be anL′
in process. From Lemma5.30, we see that ifP has an infinite→D

computation thenP has an infinite⇒D
top↘ computation. To show that infinite⇒D

top↘
computations are impossible, we assign multisets to processes and define an ordering on
these multisets which is well-founded and strictly decreasing with respect to⇒D

top↘.
As when using Method 2 to show thatLm

iī
is terminating, for a completely formal proof

we would have to develop an apparatus for labelling ambients and members of multisets
in order to make precise the correspondence between the two. We would also have to keep
track of which ambients are spun off from which occurrences of replicated ambients. Again
we have suppressed all of this in the interests of readability.

Let P0, . . . , Pi, . . . be an infinite⇒D
top↘ computation (i.e.Pi →D

top Pi+1 or Pi ↘ Pi+1,
and there are infinitely manyi for whichPi ↘ Pi+1). We assign to eachPi a finite multiset
Si . Its elements will be ordered pairs(d, T ) consisting of a natural numberd and a finite
multisetT of natural numbers. Let us say that an ambient (or replicated ambient) isIR-
guardedif it occurs inside the scope of anin (or ! in), or inside a replicated ambient. The
negation of IR-guarded isIR-unguarded. The multisetSi will satisfy the following:
(1) For each(d, T ) ∈ Si , and for eachd ′ ∈ T we haved ′ < d.
(2) The numbers inSi are precisely all degrees of IR-unguarded ambients and IR-unguarded

replicated ambients inPi : there is a bijective correspondence which
(a) maps each IR-unguarded ambientm[ Q ] of Pi to d �degree(m[ Q ]) in Si , and
(b) maps each IR-unguarded replicated ambient! m[ Q ] of Pi to number

d = degree( ! m[ Q ]) in Si ,
either as the left-hand component of some(d, T ) ∈ Si or as somed ∈ T where
(d ′, T ) ∈ Si .

(3) (a) If m[ Q ] occurs at the top level inPi , andm[ Q ] was not spun off from some
top-level replicated ambient, thenm[ Q ] corresponds tod in some(d, T ) in Si .

(b) If ! m[ Q ] occurs at the top level inPi , then ! m[ Q ] corresponds tod in some
(d, T ) in Si .

(4) If m[ R ] (resp.! m[ R ]) corresponds tod ′ ∈ T for some(d, T ) in Si , thenm[ R ] (resp.
! m[ R ]) is IR-unguarded inside somem[ Q ] corresponding tod, or elsed corresponds
to a top-level IR-unguarded replicated ambient.

We createS0 as follows: For each IR-unguarded ambientm[ Q ] of degreedcontained inP0,
we add the ordered pair(d, ∅) to S0. Similarly, for each IR-unguarded replicated ambient
! m[ Q ] of degreed contained inP0, we add the ordered pair(d, ∅) to S0. Plainly properties
(1–4) are established.

In the computation there are two kinds of reductions:→D
top and↘. Suppose thatPi →D

top

Pi+1. There are two kinds of→D
top reduction:

• An ambientm1[ Q1 ] of degreed1 enters an ambientm2[ Q2 ], using rules (In1) or (In2).
• An ambientm1[ Q1 ] of degreed1 enters an ambientm2[ Q2 ] spun off from ! m2[ Q2 ]

of degreed2, using rules (In3) or (In4).
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In both cases, by (3),m1[ Q1 ] corresponds tod ′
1 in (d ′

1, T1), with d1�d ′
1. The reduction

may produce children withinm1[ Q1 ], and we add their degrees (which are less thand1)
to T1. In the second case, by (3),! m2[ Q2 ] corresponds tod2 in (d2, T2). We have new
IR-unguarded ambients and replicated ambients produced by spinning offm2[ Q2 ]; we add
their degrees (which are less thand2) to T2. In this way we createSi+1. It is easy to check
that properties (1–4) are established forSi+1.

Now suppose thatPi ↘ Pi+1. The↘ reduction selects a top-level ambientm[ Pi+1 ],
and keepsPi+1 while discarding its enclosing ambient and any other top-level processes in
parallel withm[ Pi+1 ]. To createSi+1, first we remove each top-level replicated ambient,
and remove fromSi the corresponding(d, T ), replacing it by(d ′, ∅) for eachd ′ ∈ T . Call
this new setS′

i . Suppose thatm[ Pi+1 ] is of degreed0. By (3a) and the construction it
corresponds to an element(d ′

0, T0) of S′
i . Secondly we remove all other top-level ambients

together with their contents. We remove the corresponding entries inS′
i . Note that by (3),

(4) and the construction, if any member of some(d, T ) is to be removed, then so are all
the remaining members. Thirdly we remove(d ′

0, T0) from S′
i , and for eachd ∈ T0 we add

(d, ∅) to S′
i . Note that eachd < d0�d ′

0. Only this third stage is guaranteed to take us down
in the multiset ordering. In this way we createSi+1.

Properties (1), (2) and (4) are clearly established forSi+1. As to (3), suppose that
( ! )m[ R ] is a top-level ambient or replicated ambient inPi+1 which corresponds tod ′ ∈ T

for some(d, T ) in Si+1. Then this(d, T ) was already inSi . Therefore by (4) forSi

and the construction ofSi+1, ( ! )m[ R ] was inside somem[ Q ] corresponding tod.
The only way that( ! )m[ R ] can be top-level inPi+1 is for m[ Q ] to bem[ Pi+1 ], which
means that( ! )m[ R ] corresponds tod ′ in some (d ′, ∅) in Si+1. Thus we have
established (3).

Recall the well-founded ordering on multisets of Definition4.2 and Proposition4.3. If
we consider just the first members of the pairs in the multisetsSi , we see that a→D

top
reduction leaves the set unchanged, while a↘ reduction removes one element and replaces
it with a finite set of smaller elements (it also removes zero or more elements completely,
corresponding to the discarded top-level processes). So each⇒D

top↘ reduction takes us

down in the� ordering. By well-foundedness of� there is no infinite⇒D
top↘ computation,

and thus no infinite→D computation. �

Lemma 5.32. Let P be anL′
in process. Then P has an infinite→-computation iffP ⇒D

DIV.

Proof. (⇒) SupposeP = P0 → · · · → Pi → · · · is an infinite computation. Assume
for a contradiction that it is not the case thatP ⇒D DIV. We shall construct by induction
an infinite→D-computation, which contradicts Lemma5.31. Let P ′

0 = P0. Suppose that
we haveP ′

0 →D · · · →D P ′
i with P ′

j ≡ Pj for all j � i. SinceP ′
i ≡ Pi → Pi+1, we

haveP ′
i → Pi+1, and by Lemma5.27(5) there existsP ′

i+1 such thatP ′
i →D P ′

i+1 and
P ′

i+1 ≡ Pi+1, sinceP ′
i →D DIV is impossible by assumption.

(⇐) SupposeP ⇒D DIV. ThenP →� by Lemma5.27(1,2). �

Lemma 5.33. Termination is decidable for(L′
in, →).
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Proof.To decide whetherPhas an infinite computation, by Lemma5.32we need only check
whetherP ⇒D DIV. We do this by computing the entire computation tree ofP under→D

(of course, we can stop if and whenDIV is encountered). This is possible by Lemmas5.26
and5.31. �

We can now state our main theorem:

Theorem 5.34.Termination is decidable forLin.

Proof. By Lemmas5.25and5.33. �

Remark 5.35. It is an open question whether termination is decidable whenLin is extended
with safein as in SA. The proof method used for Theorem5.34appears not to work, since
it relies on defining a non-standard reduction relation which is terminating. The difficulty
is to find such a relation for which there can be no infinite top-level computation (as shown
for (L′

in, →D
top) in Lemma5.29). Here is an example to show the extra complications that

arise with SA:

m[ in m1 ] | ! m1[ in m1.in m2 ] | ! m2[ in m2.in m3 ] | · · · | ! mk[ in mk.in m1 ].

Herem[ in m1 ] acts as a catalyst to set in motion a cycle ofk top-level reductions, which
can repeat without end. This divergence can only be detected by consideration of allk + 1
processes.

5.3. Decidability forpull

Let Lpull be the following language:

P ::= 0 | n[ P ] | P | Q | pull n.P | ! P.

Theorem 5.36.Termination is decidable forLpull.

In proving the theorem we follow the same strategy as for Theorem5.34. We first change
from Lpull with full replication toL′

pull with replication just onpull and ambients. Next we

define a non-standard reduction relation→D which traps divergence finitely. We then show
that(L′

pull, →D) is terminating, which gives us a decision procedure. As the development
is very similar to that of Section5.2, we omit most details and just mention a few points.

The rules for→D are as in Section5.2, except that we replace rules (In1)–(In4) by five
variants of (Pull), and (InDiv1)-(InDiv6) by:

(PullDiv1) n[ ! pull m.P | Q ] | ! m[ R ] →D DIV,

(PullDiv2) ! n[ pull m.P | Q ] | ! m[ R ] →D DIV,

(PullDiv3) ! n[ ! pull m.P | Q ] | ! m[ R ] →D DIV,

(PullDiv4) ! n[ pull n.P | Q ] →D DIV,

(PullDiv5) ! n[ ! pull n.P | Q ] →D DIV.
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Matters proceed as in Section5.2 until we reach the analogue of Lemma5.29, which is
proved rather differently:

Lemma 5.37. (L′
pull, →D

top) is terminating.

Proof.TakeP0 in L′
pull, and suppose that there is an infinite computationP0 →D

top · · · →D
top

Pi →D
top · · ·. Then either (i) at least one top-level ambient performs infinitely many pulls,

or (ii) at least one top-level replicated ambient performs infinitely many pulls.
If a single ambient performs infinitely many pulls, it can only do so because of a replicated

capability ! pull n. Also, P0 must have a top-level! n[ Q ]. Suppose that! pull n is first
enabled inPi . Then we havePi →D DIV by (PullDiv1), and soPi �→D

top.
Suppose that a single replicated ambient, say! m[ P ], performs infinitely many pulls.

There must be some namen for which ! m[ P ] performspull n infinitely often. But
this is only possible ifP0 has a top-level! n[ Q ] (which may of course be the same as
! m[ P ]). This means thatP0 →D DIV, using one of rules (PullDiv2)-(PullDiv5). Hence
P0 �→D

top. �

As far as the analogue of Lemma5.31is concerned, the proof is much the same, though
we note that there is a difference when it comes to analysing→D

top reductions. WithL′
in, a

spun-off ambient could not perform anin, and hence could not have children. By contrast,
with L′

pull spun-off ambients can pull in other ambients, and so can have children. If the

spun-off ambient corresponds tod ′ ∈ T , where(d, T ) ∈ Si , we can add the degrees of its
children toT, since we know that they are less thand ′ < d.

6. Conclusions and future work

The main contribution of this paper is to show that theopen capability is not needed
to obtain Turing completeness for pure Ambient Calculi. This implies that pure Boxed
Ambients is Turing-complete.

We have sought to establish the minimality of the languageLio by showing that removing
eitherin or out capabilities leads to a failure of Turing completeness in a rather dramatic
fashion: every computation terminates.

A language very likeLio is studied in[22]. There it is shown that this language admits
symmetric electoral systems, and also that any fragment of MA with this property must
possess bothin andout capabilities. It follows that there can be no encoding satisfying
certain conditions of reasonableness fromLio into any fragment of MA not including both
in andout capabilities.

We summarise our main contributions to understanding the computational strength of MA
dialects in Fig.3. In the diagram we label each node with a language and with its strength.
The languages all have full replication (where not stated otherwise) and are identified by
the capabilities reported on the node. For example,open, in, out is pure public MA. A
similar diagram holds for the results on PAC, with one exception: the language withpush
alone and replication just onpush is not terminating (see Section4.2), and so has decidable
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open, in

open, out

in, out

in, !M Thm.4.8

in, out, !M Thm.3.10

open, !M

Lioa
op

Thm.3.9

open, in, out [8]

open, out, rec Thm.5.21

out

out, !M Thm.4.14

in Thm.5.34
open

Turing-Complete

Open Problem

Termination Decidable

Terminating

!M = replication on capabilities

Fig. 3. Computational strength of some ambient calculi.

termination. In addition, a similar diagram holds for the results on SA, with two exceptions:
(1) the language without, out alone and replication just onout, out is not terminating (see
Section4.2), and so has decidable termination; and (2) it is an open question whether the
language within, in and full replication has decidable termination (see Remark5.35).

We briefly mention some open questions/future work:
• As far as the study of the computational strength of fragments of pure Ambient Calculi

is concerned, the major open question is the strength of the fragment within andopen
capabilities (but notout). We conjecture that this fragment has decidable termination.

• We have seen that the language within as its only capability and replication (but not
restriction) has decidable termination (Theorem5.34). It is an open question whether
this is also the case when replication is replaced by restriction.

• The present work leads us to ask what might be a set of minimal constructs of AC capable
of encoding regular expressions or context-free grammars.
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Appendix A. Encoding of CMs into L
op
ioa

We present an encoding of CMs into the languageL
op
ioa defined in Section3.4:

P ::= 0 | n[ P ] | P | Q | open n.P . | in n.0 | out n.0 | ! open n.P

Theorem 3.9.Lop
ioa is Turing-complete.

Proof. The proof of Turing completeness follows the structure of that of Theorem3.8.
Numerals contain movement capabilities to interact with the instruction for decre-

ment/jump, and each register contains a capability that will allow it to interact with both
instructions:

0
df= z[ in jz ]

k + 1
df= s[ k | in ds]

[[Rj (k)]] df= rj [ in rj | k ]
The encoding is completely deterministic, since at each step only one reduction is possible.
We define the encoding at thelth stage of an arbitrary configuration ofCM:

[[CM(i : k0, . . . , kb)]]l df= sti[ ] | ∏
i �a

[[Ii]]l | ∏
j �b

[[Rj (kj )]].

We now describe the encoding of the instructions. To increment a registerrj , we first make
it enter in a dummy copy of itself which, once it acknowledges the presence of the register,
moves into a skeleton containing the additional successor ambient to add. Once this dummy
rj is insides, it is opened, the numeral is released inside the news, and an acknowledgement
ambientb is recognised both by the enclosingrj , which creates its new capabilityin rj , and
successively (ambientc) by the environment which releases the incremented register in the
top level, along with the token for the continuationsti+1.

[[i : Inc(j)]]l df=
! open sti .(rj [ open rj .(in u | in rj | in s) ]
| u[ rj [ open b.in rj | s[ in ds | open rj .b[ out s | c[ out rj | out u ] ] ] ] ]
| open c.open u.sti+1[ ]).

Notice that the encoding ofi : Inc(j) does not in fact depend on the stepl of the computation,
since there is no garbage (there will be garbage when we come to decrement/jump). The
encoding satisfies:

sti[ ] | [[i : Inc(j)]]l | [[Rj (k)]] ⇒ sti+1[ ] | [[i : Inc(j)]]l+1 | [[Rj (k + 1)]].
The instruction for decrement/jump is complicated by the need to dispose of the jump
branch if a decrement is executed, or the decrement branch if the register contains 0.

[[i : DecJump(j, i′)]]l df= ! open sti .rj [ open rj .(DS(i) | JZ(i) | F (i) | in rj ) ]
| CLR(i, ds) | CLR(i, jz)

| GRB(i, ds, jump(i, l)) | GRB(i, jz, dec(i, l)).
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The strategy consists in opening the instruction trigger (sti), inviting the register inside a
dummy copy where it is opened and then having the numeral itself selecting either theDS(i)

or theJZ(i) term according to its value. The selected term must make sure that the other
one is disposed and processesCLR(i, ds), CLR(i, jz) make sure (interacting withF (i)) that
all the garbage is collected, and trigger the appropriate continuation.

Below,x andy are complementary syntactic macros, such that ifx = jz in a term, then
y = ds(and vice versa).

DS(i)
df= ds[ open s.DISP1(i, jz) | in ddsi | in b ]

JZ(i)
df= jz[ open z.(DISP1(i, ds) | z[ in jz ]) | in d jzi | in b ]

F (i)
df= open a.open end.open d jzi .open ddsi .open b

CLR(i, x)
df= ! open dxi.a[ in rj | DISP2(i, y) ]

GRB(i, ds, n)
df= (b[ open s.DISP1(i, jz) ])n

GRB(i, jz, n)
df= (b[ open z.(DISP1(i, ds) | z[ in jz ]) ])n

DISP1(i, x)
df= dxi[ out y | b[ open x.c[ out b ] ] | open c.out rj ]

DISP2(i, x)
df= dxi[ b[ open x.end[ out b | out dxi | dyi[ ] ] | ST(x) ] ]

ST(ds)
df= sti+1[ out rj ]

ST(jz)
df= sti′ [ out rj ]

We follow step by step an example where decrement takes place. The case for jump is
almost symmetric. The initial state is

. . . | sti[ ] | [[i : DecJump(j, i′)]]l | [[Rj (k + 1)]] | . . . .

After the first three steps we reach

. . . | rj [ s[ k | in ds] | DS(i) | JZ(i) | F (i) | in rj ] | . . . .

Now s entersds, it is opened, andd jzi exitsds.

. . . | rj [ ds[ k | in ddsi | in b ]
| d jzi[ b[ open jz.c[ out b ] ] | open c.out rj ] | . . . ] | . . .

Ambient jz entersd jzi andb, gets opened,c leavesb, gets opened, andd jzi leavesrj .

. . . | rj [ ds[ . . . ] | F (i) | in rj ] | d jzi[ b[ open z.(. . .) ] ] | CLR(i, jz) | . . .

Now d jzi is opened byCLR(i, jz), a enters rj and gets opened byF (i) releasing
DISP2(i, ds) in rj .

. . . | rj [ ds[ . . . ] | open end.(. . .) | in rj | DISP2(i, ds) ] | GRB(i, jz, 1) | . . .

Ambientdsnow entersddsi andb, gets opened, and ambientendexits to the top level inrj .

. . . | rj [ ddsi[ b[ k | ST(ds) ] ] | open end.(. . .) | in rj | end[ d jzi[ ] ] ] | . . .
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Now end is opened, followed byd jzi , thenddsi , and finallyb is opened, releasing the
continuation, which exitsrj . Assuming thatdec(i, l) = m, we have

. . . | sti+i[ ] | rj [ k | in rj ] | GRB(i, jz, 1) | GRB(i, jz, m) | . . .

By definition, we have thatGRB(i, jz, 1) | GRB(i, jz, m) = GRB(i, jz, m + 1), and since a
decrement has been executeddec(i, l + 1) = m + 1, and we conclude with

. . . | sti+i[ ] | [[i : DecJump(j, k)]]l+1 | [[Rj (k)]] | . . . �

Appendix B. Encoding of CMs into Lio

We present an encoding of CMs into the languageLio defined in Section3.5:

P ::= 0 | n[ P ] | P | Q | in n.P | out n.P | ! in n.P | ! out n.P .

Theorem 3.10.Lio is Turing-complete.

Proof. (See first the sketch in Section3.5.) We consider a particular CM calledCM, with
instructionsI0, . . . , Ia and registersR0, . . . , Rb. Let CM(i : k0, . . . , kb) representCM
when it is about to execute instructioni and storingkj in registerj (j �b). Let the (unique)
finite or infinite computation ofCM = CM0 beCM0, CM1, . . . , CMl, . . ., whereCMl =
CM(il : k0l , . . . , kbl).

Each registerRj (j �b) is encoded as anrj ambient enclosing a numeral processk

encoding the stored natural numberk. Let the instructionsIi be numbered from 0 toa. The
outerrj ambient has the task of entering anysti ambient (i �a). The first registerR0 is
additionally allowed to entersta+1. This will allow R0 to be conveyed back up to the top
level to give the result of the computation.

In describing the encoding of the registers and instructions, we must take into account the
fact that both the increment and the decrement/jump instructions will accumulate garbage
each time they are used. We therefore parametrise our encoding by the indexl of the stage
we have reached in the computation. Let
• inc(i, l) be the number of increments
• dec(i, l) be the number of decrements
• decs(i, l) be the number of decrements leaving the register contents non-zero
• decz(i, l) be the number of decrements leaving the register contents zero
• jump(i, l) be the number of jumps
performed by instructioni during the computation ofCM up to, but not including, stagel.
Clearly,dec(i, l) = decs(i, l) + decz(i, l).

[[R0(k)]]l df= r0[ k l | ∏
i �a+1 ! in sti ]

[[Rj (k)]]l df= rj [ k l | ∏
i �a ! in sti ] (1�j �b).

Register 0 has special treatment to deal with finishing off the computation and
making the contents available to any further computation. The numeral processes are defined
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as follows:

0 l

df= z[ IZ | Dt | (increq[ ! in s.in t ])inc(i,l) ]
IZ

df= ! in s.in t

Dt
df= ! in dect′.out dect′.out t.out dect.

HereIZ helps with increment, andDt helps with decrement. Theincreqambients build up
as garbage inside 0l with each increment.

k + 1
l

df= s[ DS | Dt | t[ DT | Ds | k l ] ]
DS

df= in decs

DT
df= in dect

Ds
df= in decs′.out decs′.out s.out decs.

The processes insides andt help with decrement.
It is convenient to have a monitor processMon which checks that all the registers and

instructions have entered thesti ambient to reach the current level.

Mon
df= m[ ∏

i �a ! in sti .Mi ]
Mi

df= in p0.out p0. · · · in pa.out pa.in r0.out r0. · · · .in rb.out rb.mi[ out m ]
Once the monitor has finished checking, it unleashes ambientmi and instructioni is free
to go ahead. Oncesti appears, the instructions and registers reach the next level in an
indeterminate order. However, once the monitor has finished its check, the computation
proceeds deterministically until execution ofIi is complete (except for a limited concurrency
in the increment, noted below).

We now describe the encoding of the CM instructions. The process corresponding to
instructionIi (i �a) is of the form

[[Ii]]l df= pi

[ ( ∏
i′ �a

! in sti′

)
| ! in mi.out mi.Pi | Gil

]
,

wherePi carries out the instruction, which is either increment or test and decrement or
jump, andGil is the garbage which accumulates during the computation up to stagel. The
processPi will first exit pi and then enter the appropriate registerrj .

Once the computation is complete, thesta+1 ambient conveysR0 back up to the top level
using the following process:

Fa+1
df= check[ in r0.out r0.out sta+1 ] | in check.out check.

( ∏
i �a

! out sti

)
.

Thussta+1[ Fa+1 ] first checks whetherR0 has entered, and then moves up to the top level.
Thecheckambient is left behind as garbage. Fori �a, thesti ambient does nothing further

once it has appeared at the current level; it is convenient to defineFi
df= 0 (i �a).
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Before giving the instruction and garbage processesPi , Gil in detail, we complete the
encoding of the CM. We capture the way that the computation moves down successive
levels by the following contexts:

C0{•} df= •
Cl+1{•} df= Cl{stil [ mil [ ] | • ]},

whereil is the instruction performed at thelth stage. The overall encoding of the CM is:

[[CM(i : k0, . . . , kb)]]l df=
Cl{sti[ ! out t.out s | Fi ] | Mon | (∏

i �a[[Ii]]l
) | ( ∏

j �b[[Rj (kj )]]l
)}.

The encoding ofCM is [[CM]] df= [[CM0]]0. The encoded CM will go through successive
stages[[CMl]]l . We show that for each non-terminal stagel, [[CMl]]l ⇒ [[CMl+1]]l+1, and
that [[CMl]]l is guaranteed to reach[[CMl+1]]l+1. There are various cases according to
whether we are dealing with increment, decrement or jump.

The increment instructioni : Inc(j) is carried out by an ambientincreqwhich leavespi

and then penetrates to the core of the registerrj (insidez). Thensti+1 is unleashed, and
leavesincreqandz. The news[ t[ ] ] then leavessti+1. Nowzcan enters followed byt. We
need to check thatz has reached the core. Sosti+1 enterss, t and finallyz. Note that there
is limited concurrency at this point betweenzenterings, t andsti+1 enterings, t. This does
not cause a problem, as there is synchronisation whensti+1 entersz. Now the increment
is complete, andsti+1 makes its way back out ofrj . At this point the next instruction is
triggered.

Pi
df= increq[ out pi.in rj .( ! in s.in t | in z.IST) ]

IST
df= sti+1[ out increq.out z.(s[ out sti+1.(DS | Dt | t[ DT | Ds ]) ] | IA) ]

IA
df= in s.in t.in z.out z.( ! out t.out s | out rj .Fi+1).

Note thatincreq[ ! in s.in t ] is left as garbage at the core of the register insidez. There is

no garbage insidepi , and so we defineGil
df= 0.

In order to implement the instructioni : DecJump(j, i′), we must test for whether the
registerRj is zero or nonzero. This is done by the following process:

Pi
df= test[ out pi.in rj .(Qz | Qs) ]

Qz
df= in z.out z.out rj .in pi.sti′ [ out test.out pi.Fi′ ]

Qs
df= in s.out s.out rj .in pi.P

′
i .

The testambient entersrj . If it detectsz it leaves the register, re-enterspi and unleashes
instructioni′. The processtest[ Qs ] remains as garbage insidepi . Otherwisetestdetectss,
leaves the register, re-enterspi and unleashes processP ′

i , which performs the decrement
of the register before proceeding to instructioni + 1. The processtest[ Qz ] remains as
garbage insidepi .
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Decrement is performed in two stages: first strip off the outermosts, and then strip offt.

P ′
i

df= decs[ out test.out pi.in rj .(decs′[ in s ] | in t.out t.out rj .in pi.P
′′
i ) ].

To start with,decsgoes to the top level insiderj . Suppose the register containsk + 1
l
. The

portion of interest of the CM process is:

. . . rj [ decs[ decs′[ in s ] | in t.(. . .) ] | s[ DS | Dt | t[ DT | Ds | k l ] ] ] . . .

Then the whole contents of the register enter usingDS. Thendecs′ enterss, which activates
Ds , leading tot going to the top level insiderj .

. . . rj [ decs[ in t.(. . .) | s[ decs′[ ] | Dt ] ] | t[ DT | k l ] ] . . .

This is detected bydecs, which exitsrj , enterspi and unleashesP ′′
i . The first stage is

completed. The processdecs[ s[ Dt | decs′[ ] ] ] remains as garbage insidepi .
Now we must strip off the outermostt to complete the decrement. The procedure is

roughly the same, withs andt swapped.

P ′′
i

df= dect[ out decs.out pi.in rj .(dect′[ in t ] | Q′
s | Q′

z) ]
Q′

s
df= in z.out z.P ′′′

i

Q′
z

df= in s.out s.P ′′′
i

P ′′′
i

df= out rj .in pi.sti+1[ out dect.out pi.( ! out t.out s | Fi+1) ].
The ambientdectenters the register:

. . . rj [ dect[ dect′[ in t ] | Q′
s | Q′

z | t[ DT | k l ] ] ] . . .

Now t entersdect, anddect′ enterst:

. . . rj [ dect[ Q′
s | Q′

z | t[ dect′[ ] | k l ] ] ] . . .

The numeralk l usesDt to exit t anddect:

. . . rj [ dect[ Q′
s | Q′

z | t[ dect′[ ] ] ] | k l ] . . .

The end of the decrement is signalled bysti+1 appearing at the level ofpi and rj . De-
pending on whether the decremented register is zero or non-zero, we have eitherdect[ Q′

s |
t[ dect′[ ] ] ] or dect[ Q′

z | t[ dect′[ ] ] ] as extra garbage insidepi . We therefore defineGil

to be

(test[ Qs ])jump(i,l) | (test[ Qz ] | decs[ s[ Dt | decs′[ ] ] ])dec(i,l) |
(dect[ Q′

z | t[ dect′[ ] ] ])decs(i,l) | (dect[ Q′
s | t[ dect′[ ] ] ])decz(i,l).

It can be verified that all garbage can take no further part in the computation.
At the end of the computation (if it terminates) asta+1 ambient is unleashed (recall that

the last valid instruction number isa). This ambient then appears at the top level containing
R0. Thus the CM terminates iff[[CM]] ⇓ sta+1. This establishes that the weak barb relation
is undecidable, and that having a non-terminating computation is undecidable.
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To fulfil Criterion 3.1 we must ensure thatR0 is able to be used as input by further
computations. The problem is that the encoding of the register makes explicit use of the
list of instructions in order to allow it to entersti (i �a + 1). We resolve this problem by
starting any subsequent computation by first transferringR0 into a new first register which
is suited to the new instruction list. This can be done by three CM instructions, as follows.

Let the new CM beCM ′. With appropriate renumbering, its program proper uses registers
numbered 1, 2, . . . b′ (with the result being placed in register 1) and its instructions are
numbereda + 1, . . . , a′, with a + 1, a + 2, a + 3 copying the contents of register 0 into
register 1, anda + 4 being the index of the first true instruction ofCM ′. We also assume a
registerRb′+1 with contents set to 0 (this is used in instructionIa+3).

a + 1 : DecJump(0, a + 4)

a + 2 : Inc(1)

a + 3 : DecJump(b′ + 1, a + 1)

a + 4 : Start ofCM ′ proper.

We adjust the definition ofR0 in CM so that it can take part in instructionsIa+1, Ia+2 and
Ia+3:

[[R0(k)]]l df= r0

[
k l | ∏

i �a+3
! in sti

]
.

We define the monitor processMon of CM ′ in such a way that the oldR0 is not expected
to travel beyond instructiona + 3; we omit the details.

Strictly speaking, we should have taken all this into account in our definitions of the
encoding, but it seemed clearer not to do this.

One can adapt the above encoding to ensure that there are no continuations after the “out”
capabilities. An essential difference is that it is not clear how to adapt the monitor process,
which is therefore dispensed with. Thus there will be concurrency, in that the registers
and instructions will make their way downwards at different rates, but this does not lead
to any erroneous computations. Similar considerations apply to the increment: the process
has to be changed to a more non-deterministic one, though again without any erroneous
computations. �

Appendix C. Encoding of CMs into Lpp

We present an encoding of CMs into the languageLpp defined in Section3.5:

P ::= 0 | n[ P ] | P | Q | push n.P | pull n.P | ! push n.P | ! pull n.P .

Theorem 3.13.Lpp is Turing-complete.

Proof. We consider a particular CM calledCM, with instructionsI0, . . . , Ia and registers
R0, . . . , Rb. Let CM(i : k0, . . . , kb) representCM when it is about to execute instruction
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i and storingkj in register j (j �b). Let the (unique) finite or infinite computation of
CM = CM0 beCM0, . . . , CMl, . . ., whereCMl = CM(il : k0l , . . . , kbl).

We shall describe how registers are encoded, followed by the same for instructions. Then
we shall describe how the encoded CM operates in detail. In describing the encoding of the
registers and instructions, we must take into account the fact that both the increment and the
decrement/jump instructions will accumulate garbage each time they are used. We therefore
parametrise our encoding by the indexl of the stage we have reached in the computation.
Let
• inc(i, l) be the number of increments
• decs(i, l) be the number of decrements leaving the register contents non-zero
• decz(i, l) be the number of decrements leaving the register contents zero
• jump(i, l) be the number of jumps
performed by instructioni during the computation ofCM up to, but not including, stagel.

Zero and successor registers with their contents are encoded as follows:

[[Rj (0)]]l df= zj [ (increqj [ ])inc(i,l) | ! pull increqj .

(push sj | sj [ SZj | SDj | Ij | tj [ T Zj | T Dj | Ij ] ]) ]
[[Rj (k + 1)]]l df= sj [ SDj | Ij | tj [ T Dj | Ij | [[Rj (k)]]l ] ].

Thus incrementing a register by 1 involves adding two new surrounding ambientssj , tj .
These will actually be added to the core of the register process, immediately round the central
zj ambient, when a request is received (anincreqj ambient is detected). The auxiliarytj
ambients are introduced to help in handling decrements.

SZj
df= pull zj .push incackj ,

T Zj
df= pull zj .(push incackj | incackj [ ]).

TheIj process pullsincreqj [ ] inwards towards the core, and pushes the acknowledgement
incackj [ ] out towards the top level:

Ij
df= ! pull increqj .push incackj .

TheSDj andT Dj processes help in decrementing a non-zero register:

SDj
df= pull uj .push tj

T Dj
df= pull decreqj .(T DSj | T DZj )

T DSj
df= push sj .(push decackj | decackj [ ])

T DZj
df= push zj .(push decackj | decackj [ ]).

We now turn to the instructions. Theith instruction is activated when asti[ ] ambient appears
at the top level.
(1) Increment. The encoded instruction[[i : Inc(j)]]l is

pi[ ! pull sti .(increqj [ ] | push increqj .pull incackj .(push sti+1 | sti+1[ ]))
| (GIij )inc(i,l) ]

whereGIij
df= sti[ ] | incackj [ ] is the garbage which accumulates with each increment.
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(2) Test and decrement or jump.[[i : DecJump(j, i′)]]l is

pi[ ! pull sti .(push test | test[ Testzj | Testsj ]) | ! F Zji′ | ! FSij

| (GJij )jump(i,l) | (GDSij )decs (i,l) | (GDZij )decz(i,l) ],
where

Testzj
df= pull zj .push zj .(push tested| tested[ Testedzj ])

Testsj
df= pull sj .push sj .(push tested| tested[ Testedsj ])

Testedzj
df= pull test.(push donezj | donezj [ ])

Testedsj
df= pull test.(push donesj | donesj [ ])

F Zji′
df= pull donezj .pull tested.(push sti′ | sti′ [ ])

FSij
df= pull donesj .pull tested.(FDij | decreqj [ DRj ])

FDij
df= push decreqj .pull decackj .pull tj .(push sti+1 | sti+1[ ])

DRj
df= uj [ ] | pull sj .push tj .

Garbage can accumulate in three different ways, depending on whether the register
contents are zero (giving a jump), or non-zero (giving a decrement where the new
contents may be either zero or a successor):

GJij
df= sti[ ] | donezj [ ] | tested[ test[ Testsj ] ]

GDZij
df= sti[ ] | donesj [ ] | tested[ test[ Testzj ] ]

| decackj [ ] | tj [ decreqj [ sj [ uj [ ] | Ij ] ] | TDSj | Ij ]
GDSij

df= sti[ ] | donesj [ ] | tested[ test[ Testzj ] ]
| decackj [ ] | tj [ decreqj [ sj [ uj [ ] | Ij ] ] | TDZj | Ij ].

We define:

[[CM(i : k0, . . . , kb)]]l df= sti[ ]
∣∣∣∣
( ∏

i �a
[[Ii]]l

)∣∣∣∣
( ∏

j �b
[[Rj (kj )]]l

)
.

The encoding ofCM is [[CM]] df= [[CM0]]0. The encoded CM will go through successive
stages[[CMl]]l . We show that for each non-terminal stagel, [[CMl]]l ⇒ [[CMl+1]]l+1, and
that [[CMl]]l is guaranteed to reach[[CMl+1]]l+1. Computation is entirely deterministic.
There are various cases, depending on the kind of instruction.

First consider the execution of[[i : Inc(j)]]l . Starting from

sti[ ] | [[i : Inc(j)]]l | [[Rj (k)]]l ,
the instruction is activated (ambientpi), and theincreqj [ ] ambient is pushed to the top
level:

[[i : Inc(j)]]l | pi[ sti[ ] | pull incackj .(. . .) | . . . ] | increqj [ ] | [[Rj (k)]]l .
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Then theincreqj [ ] ambient is pulled into the core of the register process, where it is added
to the accumulated garbage. This leads to ansj ambient being pushed out ofzj .

. . . zj [ (increqj [ ])inc(i,l+1) | ! pull increqj .(. . .) ] | sj [ SZj | . . . ] . . .

Thenzj is pulled intosj followed bytj , so that the register is incremented.

. . . sj [ push incackj | SDj | Ij

| tj [ push incackj | incackj [ ] | Ij | zj [ . . . ] ] ] . . .

The acknowledgementincackj [ ] is then pushed out to the top level, where it is pulled
in by pi , which then activates the next instruction by pushing outsti+1[ ]. The garbage
sti[ ] | incackj [ ] (i.e.GIij ) is left insidepi , where it is added to the accumulated garbage.
We now have

sti+1[ ] | [[i : Inc(j)]]l+1 | [[Rj (k + 1)]]l+1.

We now consider the execution of[[i : DecJump(j, i′)]]l . Starting from

sti[ ] | [[i : DecJump(j, i′)]]l | [[Rj (k)]]l
the instruction is activated (ambientpi), and thetestambient is sent out to test whetherk is
zero or non-zero.

. . . pi[ sti[ ] | ! FZji′ | ! FSij | . . . ] | test[ Testzj | Testsj ] | [[Rj (k)]]l .
Once it has done the test it produces ambienttested, which signals the result toPi by
producing eitherdonezj or donesj , depending on whetherk is zero or non-zero. There are
now two possibilities, depending on whetherk is zero or non-zero.

1. k is zero. ThenFZji′ enablespi to pull in testzj andtested.

pi[ sti[ ] | donezj [ ] | tested[ test[ Testsj ] ] | push sti′ | sti′ [ ] | . . . ].
Thenpi pushes out ambientsti′ to trigger the next instruction. (In the case thati′ = i

there is a choice of ambients to push out, but this does not affect the determinism of the
computation in any significant way.) The process

sti[ ] | donezj [ ] | tested[ test[ Testsj ] ]
(i.e.GJij ) is added to the accumulated garbage. We are left with

sti′ [ ] | [[i : DecJump(j, i′)]]l+1 | [[Rj (k)]]l+1 .

2. k is non-zero. ThenFSij enablespi to pull in testsj andtested.

pi[ sti[ ] | donesj [ ] | tested[ test[ Testzj ] ] | FDij | decreqj [ DRj ] | . . . ].
Thenpi pushes out ambientdecreqj to carry out the decrement. Thendecreqj pulls in sj

(the entire register).

pi[ sti[ ] | donesj [ ] | tested[ test[ Testzj ] ] | pull decackj .(. . .) | . . . ]
| decreqj [ uj [ ] | push tj | sj [ SDj | Ij | tj [ TDj | Ij | [[Rj (k − 1)]]l ] ] ].
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Now sj can pull inuj and push outtj . Thendecreqj pushestj out to the top level, which
enablestj to detect it is at the top level by pulling indecreqj .

pi[ sti[ ] | donesj [ ] | tested[ test[ Testzj ] ] | pull decackj .(. . .) | . . . ]
| tj [ decreqj [ sj [ uj [ ] | Ij ] ] | TDSj | TDZj | Ij | [[Rj (k − 1)]]l ].

Now tj pushes out the decremented register—with outermost ambient eithersj or zj , de-
pending on the value ofk—and then signals completion of the decrement by pushing out
decackj [ ]. We illustrate the case whenk − 1> 0:

pi[ sti[ ] | donesj [ ] | tested[ test[ Testzj ] ] | pull decackj .(. . .) | . . . ]
| decackj [ ] | tj [ decreqj [ sj [ uj [ ] | Ij ] ] | TDZj | Ij ] | [[Rj (k − 1)]]l .

Then decackj is detected bypi , which pulls in the left-overtj , and activates the next
instructioni + 1. The garbage accumulates as eitherGDSij or GDZij . We are left with

sti+1[ ] | [[i : DecJump(j, i′)]]l+1 | [[Rj (k − 1)]]l+1 .

Finally, we see that ifCML is terminal (soiL = a + 1) then[[CML]]L has no reductions.
[[CML]]L displays barbsta+1 to indicate termination. The result of the computation, stored
in register 0, is usable by subsequent computations. On the other hand, ifCM does not
terminate, then neither does[[CM]], and the barbsta+1 will never appear. There are no
“bad” computations, i.e. ones which halt in a non-final state, diverge, or produce unintended
behaviour. We have a encoding which shows Turing completeness, and also undecidability
of termination and of weak barbs.�
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