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Distributed systems and applications are often expected to enforce high-level authorization policies. To this end,
the code for these systems relies on lower-level security mechanisms such as, for instance, digital signatures, local
ACLs, and encrypted communications. In principle, authorization specifications can be separated from code and
carefully audited. Logic programs, in particular, can express policies in a simple, abstract manner.

We consider the problem of checking whether a distributed implementation based on communication channels
and cryptography complies with a logical authorization policy. We formalize authorization policies and their
connection to code by embedding logical predicates and claims within a process calculus. We formulate policy
compliance operationally by composing a process model of the distributed system with an arbitrary opponent
process. Moreover, we propose a dependent type system for verifying policy compliance of implementation
code. Using Datalog as an authorization logic, we show how to type several examples using policies and present
a general schema for compiling policies.
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1. TYPING IMPLEMENTATIONS OF AUTHORIZATION POLICIES
1.1 Background

Given a request to access a sensitive resource in a computer systeumtharization pol-
icy determines whether the request is allowed. The conditions in authorization policies
typically involve the action (for example, writing a file), objects (the file being accessed,
its directory), and subjects (the requester, the owner of the file). A system complies with
the policy if these conditions hold whenever the action is performed. Authorization and
access control issues can be complex, even at an abstract level. Some policies address
security concerns for multiple actors and may involve humerous concepts such as roles,
groups, partial trust, and controlled delegation. Their study has a long history [Lampson
1971; Samarati and de Capitani di Vimercati 2001].

Often, authorization policies are expressed precisely only in code, intermingled with
other functions and with low-level enforcement mechanisms such as cryptography or sys-
tem calls. The result can be hard to analyze and audit. Hence, a reasonable guiding princi-
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2 . C. Fournet and A. D. Gordon and S. Maffeis

ple is to express authorization policies in a high-level language, separate from imperative
code and independent of particular enforcement mechanisms. Specifically, logic program-
ming seems well suited for expressing policies precisely and concisely: each authorization
request is formulated as a logical request against a database of facts and rules. Often, the
policy itself carefully controls changes to the database. In particular, variants of Data-
log have been usefully applied to design trust management systems (for instance, Policy-
Maker [Blaze et al. 1996], SD3 [Jim 2001], Binder [DeTreville 2002]), to express complex
policies (for instance, Cassandra [Becker and Sewell 2004]), and to study authorization
languages (for instance, SDSI/SPKI [Abadi 1998; Li and Mitchell 2003], XrML [Content-
Guard 2002]).

1.2 Our Approach

Given a target authorization policy, we consider the problem of verifying whether a par-
ticular system correctly implements the policy. In a distributed setting, this refinement
typically involves security protocols and cryptography. For instance, when receiving a re-
guest, one may first verify an identity certificate, then authenticate the message, and finally
consider the privileges associated with the sender.

Since the whole system can be seen as a complex cryptographic protocol, we adopt two
ideas from work on specifying security protocols:

—First, annotations on the code of a system mark security-related events such as access
rights being granted and checked. In previous work, the relation between imperative
code and declarative policies is usually informal: theoretical studies rarely connect an
authorization logic to an operational semantics. Our work makes the connection explicit;
we aim to show that every successful access control decision made by code actually
conforms to the authorization policy.

—Second, we adapt the standard “network is the opponent” threat model, a conservative
model first formalized by Dolev and Yao [1983]. Hence, we aim to show that active at-
tacks on the underlying cryptographic protocols cannot bypass our authorization policy;
in particular, we want to prove the absence of the man-in-the-middle or impersonation
attacks that often afflict cryptographic protocols.

Our formal development is within a typed version of the spi calculus [Abadi and Gordon
1999], a pi calculus with abstract cryptographic operations. We use inert processes—
called statements and expectations—as code annotations to state the global authorization
policy, to mark successful authorization checks, and to mark the pre-conditions for access
to sensitive resources.

—A statementecords an arbitrary logical clause. For example, a statement
employeéalice)

records thaalice belongs to the group of employees. Such an annotation would follow
code checking foalice in a suitable database, for example. A statement of a logical
clause

canRea@X ,handbook:— employeéX)

records that any employee can read a particulahfiledbook Such a statement might
be a top-level annotation on the whole system, stating a global policy.
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—An expectatioris a falsifiable claim that a particular fact or clause is logically entailed
by the set of active statements. For example, the expectation

expectcanReahlice handbool

records thatanRea¢hlicehandbook should be entailed in the current context. Such
an annotation would precede the code providitige access to the sensitive resource
handbook for example. This expectation is justified if the two previous statements are
active. On the other hand, if those are the only active statements, the expectation

expectcanRea¢bobhandbook

is unjustified. The presence of this expectation at runtime may reveal a coding error
that allowsbobaccess tdhvandbookwithout a preceding check fdmobin the employee
database.

Our methodology is to insert statements after code performing dynamic checks, and to
insert expectations before code accessing sensitive resources, so that access control errors
result in unjustified expectations. The role of our type system is to check statically that in
all executions, all expectations are justified by previously executed statements.

Statements and expectations generalize the begin- and end-events of a previous em-
bedding [Gordon and Jeffrey 2003b] of the correspondences of Woo and Lam [1993] in
a process calculus. Correspondences are a common basis for specifying correctness of
authentication protocols. (Authentication should not be confused with authorization, al-
though the former is often a prerequisite for the latter; authorization answers questions
such as “is this request allowed?” while authentication answers subsidiary questions such
as “who sent this request?”)

In contrast to several previous works, we use the authorization language as a statically
enforced specification, instead of a language for programming dynamic authorization de-
cisions. The two approaches are complementary, and indeed may be combined. The static
approach is less flexible in terms of policies, as we need to anticipate the usage of the facts
and rules involved at runtime. In contrast, a logic-based implementation may dynamically
accept (authenticated) facts and rules, as long as they lead to a successful policy evaluation.
The static approach is more flexible in terms of implementations, as we can assemble im-
perative and cryptographic mechanisms (for example, communications to collect remote
certificates), irrespective of the logic-based evaluation strategy suggested by the policy.
Hence, the static approach may be more efficient and pragmatically simpler to adapt to
existing systems. Non-executable policies may also be simpler to write and to maintain, as
they can safely ignore functional issues.

1.3 Summary of Contributions

To our knowledge, our work is the first to relate authorization logics to their cryptographic
implementation in a process calculus.

—We show how to embed a range of authorization logics within a pi calculus. (We use
Datalog as a simple, concrete example of an authorization logic.)

—We develop a new type system that checks conformance to a logic policy by keeping
track of logical facts and rules in the typing environment, and using logical deduction to
type authorization expectations. Our main result, Theorem 3, states that all expectations
activated in a well-typed program follow from the enclosing policy.
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—As a sample application, we present two distributed implementations of a simple Datalog
policy for conference management that features rules for filing reports and delegating
reviews. One implementation requests each delegation to be registered online, whereas
the other enables offline, signature-based delegation, and checks the whole delegation
chain later, when a report is filed.

—As another application, we present a generic implementation of Datalog via a translation
into the pi calculus. The translated processes are well-typed in our system. They can
serve as a default centralized implementation for any part of a policy.

We built a typechecker and a symbolic interpreter for our language, and used them to
validate these applications. Our initial experience confirms the utility of such tools for
writing code that composes several protocols, even if its overall size remains modest so far
(a few hundred lines).

1.4 Related Work

There is a substantial literature on type systems for checking security properties. To the
best of our knowledge, the earliest work on types for access control is by Jones and Liskov
[1978]. They propose extending strongly typed languages with constraint expressions to
specify an upper bound on legal access to objects of a given type. If well-typed, a program
never tries to access an object whose type does not have the correct access permission.

In the context of process calculi there are, for example, type systems to check various
information flow [Abadi 1999; Gordon and Jeffrey 2005; Pottier 2002] and authentic-
ity [Duggan 2002; Gordon and Jeffrey 2003a] properties in the pi calculus and the spi
calculus, access control properties of mobile code in the boxed ambient calculus [Bugliesi,
Castagna, and Crafa 2004], and discretionary access control [Bugliesi, Colazzo, and Crafa
2004], and role-based access control [Braghin et al. 2004] in the pi calculus.

Various experimental systems, such as JIF [Myers and Liskov 2000] and KLAIM [De
Nicola et al. 2000], for example, include types for access control. Still, there appears to be
no prior work on typing implementations of a general authorization logic.

In the context of strand spaces and nonce-based protocols, Guttman et al. [2004] anno-
tate send actions in a protocol with trust logic formulas which must hold when a message
is sent, and receive actions with formulas which can be assumed to hold when a message
is received. Their approach also relies on logically-defined correspondence properties, but
it assumes the dynamic invocation of an external authorization engine, thereby cleanly
removing the dependency on a particular authorization policy when reasoning about pro-
tocols. A more technical difference between our approaches is that we attach static autho-
rization effects to any operation (input, decryption, matching) rather than just to message
inputs.

ProVerif [Blanchet 2002] checks correspondence assertions in the applied pi calculus
by reduction to a logic programming problem. ProVerif can check complex disjunctive
correspondences, but has not been applied to check general clausally-defined authorization
policies.

Guelev et al. [2004] also adopt a conference programme committee as a running exam-
ple, in the context of model checking the consequences of access control policies.
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1.5 Contents

The paper is organized as follows. Section 2 reviews Datalog, illustrates its usage to ex-
press authorization policies, and states a general definition of authorization logics. Sec-
tion 3 defines a spi calculus with embedded authorization assertions. Section 4 presents
our type system and states our main safety results. Section 5 develops well-typed distrib-
uted implementations for our sample delegation policy. Section 6 describes our pi calculus
implementation of Datalog and states its correctness and completeness. Section 7 con-
cludes and sketches future work.

Appendixes contain the proofs of the theorems stated in the body of the paper. Appen-
dix A contains the proofs for Datalog, and a generic substitutivity property of authorization
logics useful for our main results. Appendix B contains the proofs of our robust safety re-
sult for the spi calculus. Appendix C contains the formal definition of syntactic sugar and
the proofs for the encoding of Datalog in spi.

Some details of proofs omitted from this paper plus the full listing of the example in
Section 5 appear in a technical report [Fournet et al. 2005a]. A preliminary, abridged
version of this work appears as a conference paper [Fournet et al. 2005b].

2. A SIMPLE LOGIC FOR AUTHORIZATION

We briefly present a syntax and semantics for Datalog, and discuss its use in formulating
authorization policies. (For a comprehensive survey of Datalog, see Ceri et al. [1989].)
The results in subsequent sections are independent of many of the details of Datalog; we
formulate a notion o&uthorization logido capture the properties on which we rely.

2.1 Syntax of Datalog

A Datalog program consists &icts which are statements about the universe of discourse,
andclauseswhich are rules that can be used to infer facts. In the following, we interpret
Datalog programs as authorization policies.

SYNTAX FOR DATALOG:

I
X,Y,Z logic variable
ui= term

X logic variable

M spi calculus message (see Section 3)
L= literal

p(ug,...,uUn) predicatep holds for termsug, ..., U,
C:= Horn clause

L:—Lg,...,Ln clause, witm > 0 andfv(L) C J; fv(L;)
S:= Datalog program (or policy)

{C1,...,Cn} set of clauses

Convention: a clausk: — with an empty body (dact) is denoted simply by..

We letF range over facts.
L 1

Terms range over logic variable§Y,Z and messagdsl; these messages are treated as

Datalog atoms, but they have some structure in our spi calculus, defined in Section 3.
Aclausel:—L;,...,Lyhas ahead L, and abody; L1,...,Ly; itis intuitively read as the

universal closure of the propositional formldgA ... ALy — L. Ina clause, logic variables
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occurring in the body bind those occurring in the head. A phrase of syntaeusdif it
has no free variables. We require that each clause be groufatt & is a clause with an
empty body.

We use the following notations: for any phragewe letfn(¢) andfv(¢) collect free
spi calculus names and free variables, respectively. We write the tupleg;, ..., ¢, for
somet > 0. We write{u/X} for the capture-avoiding substitution of tetnfior variableX,
and write{U/X} instead of{u1/X1}...{un/Xn}. We letc range over these substitutions.
Similarly, we write{M /x} for the capture-avoiding substitution of mess&gér namex.
We use postfix notations for applying substitutions.

2.2 Semantics of Datalog

We describe standard semantics for deriving facts and clauses from a Datalog program.
Facts can be derived using the rule below:

LOGICAL INFERENCE OFFACTS: SEF

I
(Infer Fact)
L:—Lg,...,.Ln€S S=Lo Viel.n

Sk Lo

forn>0

More generally, a clausg is entailedby a programS, written S}= C, when we have
{F | SU{C} EF} C{F | SUSE F} for all programsS. Similarly, C is uniformly
contained in Svhen the inclusion above holds for all progra@isontaining only facts.
Entailment is a contextual property for programsS= C andSC S, thenS = C. We rely
on this property when we reason about partial programs. In Datalog, entailment and uni-
form containment coincide, hence entailment is decidable [Sagiv 1987] and can be checked
operationally using thehasetechnique.

THEOREM 1. [Sagiv 1987] For all C and sets of clauses S, (1) and (2) are equivalent:

(1) forall sets of facts S{F | SU{C} =F} C{F | SUSEF};

(2) Su{Lso,...,Lho} = Lo, where C=L:—Ly,...,Lpando = {)7/>~<} is an injective
substitution such thafx} N (fn(S)Ufn(C)) = @ andX = fv(Ly,...,Ln).

In light of the previous theorem, we generalize inference to clauses, as follows.

LOGICAL INFERENCE FORCLAUSES (ENTAILMENT): SEC

I
(Infer Clause)
Su{Ljo,...,Lhc} ELo o mapsfv(Li,...,Ly) to fresh, distinct atoms

SELi—Ly,...,Lq

We rely on the following monotonicity and substitutivity properties of Datalog inference
when developing our type system.

PropPoOsITION 1. If SE=C then $J{C'} =C.

PrRoPOSITION 2. If S C ando sends hames to messages,ISCo.
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A Type Discipline for Authorization Policies . 7

2.3  Some Predicates for Authorization

Our main example application is a simplified conference management system, in charge
of assigning papers to referees and collecting their reports. For simplicity, we focus on the
fragment of the policy that controls the right to file a paper report in the system, from the
conference manager’s viewpoint. This right, represented by the pre®eata{U,ID,R),
is parameterized by the principal who files the report, a paper identifier, and the report
content. It means that principél can submit reporR on paperlD. For instance, the
fact Reporfalice 42 report43 authorizes a particular report to be filed. Ideally, such facts
should be deducible from the policy, rather than added to the policy one at a time. To this
end, we introduce a few other predicates.

Some predicates represent the content of sextensionatlatabase of explicitly given
facts. In our example, for instand@CMembefU) means that principdl is a member of
the programme committee for the conferenRefere¢U,ID) means that principdl has
been asked to revie¥D; andOpinion(U,ID,R) means that principdll has written report
R on papelD. Other predicates aiatensionaj they represent views computed from this
authorization database. For instance, one may decide to spagiyr{U,ID,R) using two
clauses:

Repor{U,ID,R):—Refere¢U,ID),OpinionU,ID,R) (clauseA)
Repor{U,ID,R):—PCMembefU),Opinion(U,ID,R) (clauseB)

These clauses state thatan reporR onID if she has this opinion and, moreover, either

has been assigned this paper (clad¥eor U is in the programme committee (clauBg—

thereby enabling PC members to file reports on any paper even if it has not been assigned
to them. Variants of this policy are easily expressible; for instance, we may instead state

that PC members can file only subsequent reports, not initial ones, by using a recursive
variant of clausd:

Repor{U,ID,R):—PCMembefU),Opinion(U,ID,R),ReportV,ID,S)

Continuing with our example, we extend the policy to enable any designated refer-
ees to delegate their task to a subreferee. To this end, we add an extensional predicate,
DelegatéU,V,ID), meaning that principdl intends to delegate papHD to principalV,
and we add a clause to derive new faeefere¢V,ID) accordingly:

ReferegV,ID) :— Refere¢U,ID),DelegatéU,V,ID) (clauseC)

Conversely, the policy A,B,C } does not enable a PC member to delegate a paper, unless
the paper has been assigned to her.

As can be seen from these clauses, our logical formalization adopts the subjective view-
point of the conference system, which implicitly owns all predicates used to control reports.
In contrast, more sophisticated authorization languages [Abadi et al. 1993] associate facts
with the principals that “say” them. Even@pinion(U,_) andDelegat€U,...) are implicitly
owned byU, these predicates represent the fact that the conference system believes these
facts, rather thatJ's intents. Also, the distinction between intensional and extensional
predicates is useful to interpret policies but is not essential. As we illustrate in Section 5,
this distinction in the specification does not prescribe any implementation strategy.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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2.4 A General Notion of Authorization Logic

Although Datalog suffices as an authorization logic for the examples and applications de-
veloped in this paper, its syntax and semantics are largely irrelevant to our technical de-
velopments. More abstractly, our main results hold for any logic that meets the following
requirements.

AUTHORIZATION LoGIC: (¢,fn, =)

An authorization logic(€,fn, |=) is a set of clause€ € ¥ closed by substitutions of
messages for names, with finite setsree names f{C) such thatCo = C if dom(c) N
fn(C) = @ andfn(Co) C (fn(C) \ dom(c)) Ufn(o); and with arentailment relation $=C,
between sets of claus8s- ¢ and clause€,C’ € ¢, such tha{Mon) S=C = SU{C'} |-
IC and(Subst) $=C=-So =Co.

By Propositions 1 and 2, Datalog is an authorization logic.

3. A SPI CALCULUS WITH AUTHORIZATION ASSERTIONS

The spi calculus [Abadi and Gordon 1999] extends the pi calculus with abstract crypto-
graphic operations in the style of Dolev and Yao [1983]. Names represent both crypto-
graphic keys and communication channels. The version of spi given here has a small but
expressive range of primitives: encryption and decryption using shared keys, input and
output on shared channel names, and operations on pairs. We conjecture that our results,
including our type system, would smoothly extend to deal with more complex features
such as asymmetric cryptography and communications, and a richer set of data types.

The main new features of our calculus are authorization assertions represented by inert
processes called statements and expectations. These processes generalize the begin- and
end-assertions in previous embeddings of correspondences in process calculi [Gordon and
Jeffrey 2003b]. Similarly, statements and expectations track security properties but, (in
contrast to assertions in typical programming languages) do not in themselves affect the
behaviour of processes.

A statements simply a clause€ (either a fact or a rule). For example, the following
process is a composition of clauaeof Section 2.3 with two facts:

A | Refereéalice42) | Opinion(alice 42yeport4) (proces¥)

An expectatiorexpectC represents the expectation on the part of the programmer that
the rule or factC can be inferred from clauses in parallel. Expectations typically record
authorization conditions. For example, the following process represents the (justified) ex-
pectation that a certain fact follows from the clausePB.of

P | expectReportalice 42report4) (procesKQ)

Expectations most usefully concern messages instantiated at runtime. In the following,
the contenk of the report is received from the chanmel

P | out c (report420Kk) | in c(x,y); expectReporfalice42x) (procesR)

In this parallel composition, the second subprocess outputs a message whose payload is a
pair that contains the report plus the distinguished take(an annotation to help typing,

with no effect at runtime). The third subprocess inputs a message, binds its corntent to
andy, and expects to be the report.
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All the statements arising in our case studies fall into two distinct classes. One class
consists of unguarded, top-level statements of authorization rules, such as those in the
previous section, that define the global authorization policy. The other class consists of
input-guarded statements, triggered at runtime, that declare facts—not rules—about data
arising at runtime, such as the identities of particular reviewers or the contents of reports.
Moreover, we have not found a use for expectations of proper rules; all the expectations in
our case studies are simply of facts.

The syntax and informal semantics of our full calculus is as follows. Binding occur-
rences of names have type annotationgr U; the syntax of our system of dependent
types is in Section 4.

SYNTAX FOR MESSAGES ANDPROCESSES

I

a,b,c,k x,y,z name

M,N = message
X name: a key or a channel
{M}N authenticated encryption & with key N
(M, N) message pair
ok distinguished message

PQR:= process
out M(N) asynchronous output of to channeM
in M(xT);P input of x from channeM (x has scop®)
newx.T;P fresh generation of name(x has scop®)
P|lQ parallel composition oP andQ
P unbounded parallel composition of replicashof
0 inactivity

decrypt M as{y.T }N;P bindy to decryption oM with key N (y has scop®)
split M as(x:T,y:U);P solve(x,y) = M (x has scop& andP; y has scop®)
match M as(N,y:.U);P solve(N,y) =M (y has scop®)
C statement of clause
expectC expectation that clausgis derivable
Notations:(i:'f) 2 (X1 T1, . %0 Th) andnewX.T;P 2 Newxy:Tq;...NeWXn:Th; P
LetS={Cy,...,Ch}. We writeS|PforCy | ... |Cn | P.
L

The split andmatch processes for destructing pairs are worth comparingpli binds
names to the two parts of a pair, whilereatch is effectively asplit followed by a condi-
tional; think of match M as (N,y); P assplit M as (x,y);if x= N then P. Takingmatch
as primitive is a device to avoid using unification in a dependent type system [Gordon and
Jeffrey 2003a].

Next, we present the operational semantics of our calculus via standard structural equiv-
alence P = Q) and reduction® — Q) relations. The following rules are standard. State-
ments and expectations are inert processes; they do not have particular rules for reduction
or equivalence (although they are affected by other rules). The conditional operations
decrypt, split, andmatch simply get stuck if decryption or matching fails; we could allow
alternative branches for error handling, but they are not needed for the examples in the
paper.
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RULES FORSTRUCTURAL EQUIVALENCE: P=Q

I
P=P (Struct Refl)
Q=P=P=Q (Struct Symm)
P=QQ=R=P=R (Struct Trans)
P=P = newxT;P=newxT;P (Struct Res)
P=P =P|R=P|R (Struct Par)
P=P=IP=IP (Struct Repl)
Plo=P (Struct Par Zero)
PIQ=Q|P (Struct Par Comm)
(PIQ)|R=P|(Q|R) (Struct Par Assoc)
IP=P|!P (Struct Repl Unfold)
nNp=1Ip (Struct Repl Repl)
I(PIQ=!'P|!Q (Struct Repl Par)
10=0 (Struct Repl Zero)
newx.T;(P|Q)=P|newxT;Q (Struct Res Par) (fox ¢ fn(P))
newxi:Ti;newx,:To;P = (Struct Res Res)

new x:To; newx1: Ty, P (for x1 # X2,%1 ¢ fn(T2), %2 ¢ fn(T1))

RULES FORREDUCTION: P — P’

I

P-P=P|Q-F|Q (Red Par)
P— P = newxT;P— newxT;P (Red Res)
P=QQ—-Q, Q=P =P—=F (Red Struct)
outa(M) |in a(xT);P — P{M/x} (Red Comm)
decrypt {M}kas{y:T}k;P — P{M/y} (Red Decrypt)
split (M,N) as(xT,y:U);P — P{M/x}{N/y} (Red Split)
match (M,N) as(M,y:.U);P — P{N/y} (Red Match)

Notation: P —% P'isP=P orP —* P,
L

In examples, we rely on derived notations feary tuples and pattern-matching via
sequences of match and split operations.rFer2, (M1, Ma, ..., Mp) abbreviatesMy, (M,
..,Mp)). For pattern matching, we writeiple M as (N4,...,N,);P, wheren > 0, M
is a message (expected to be a tuple), and &adh an atomic pattern. Let an atomic
pattern be either a variable pattexnor a constant pattern, writteaM, whereM is a
message to be matched. Each variable pattern translatesplit,aand each constant
pattern translates tormatch. For exampletuple (a,b,c) as (x,=h,y); P translates to the
processsplit (a,(b,c)) as (x,z);match z as (b,z);split (z,2) as (y,z); P, wherezis fresh.
The translation introduces a fresh temporary namet occurring free irP, and at the
last step it duplicatezin order to allow a match or split operation. When usingtilngde
notation, we omit the types from variable patterns because they can be inferred during
typechecking. Appendix C includes the formal definition of this tuple notation.

We enrich the syntax of inputs and decryption with the tuple notation as follows, where
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in both translations the nanyds chosen to not occur iN4, ..., N, P.

in M(Ny,...,N,);P = in M(y);tuple yas(Ny,...,N,);P
decrypt M as{Nj,...,N,}N;P < decryptM as{y}N;tupleyas(N;,...,N,);P

The notation does not translate to an atomic primitive; hence, in the case of input, a mes-
sage may be received, then silently discarded because it does not match the pattern. This
does not matter in our case because we are mostly interested in safety properties.

The presence of statements and expectations in a process induces the following safety
properties. Intuitively, an expectati@xpectC is justifiedwhen there are sufficient active
statements to deriv€. (A statement is active when it appears in the context, in parallel
composition withexpectC.) Then a process is safe if every expectation in every reachable
process is justified.

SAFETY:
A proces<P is safeif and only if whenever

P —X newXT; (expectC | P)
we haveP’ = new§:.U; (Cy | ... | Cy | P”) and{Cy,...,Cq} = C with {y} Nfn(C) = @.
|

The definition mentiong fo allow fresh names i€, while it mentionsyto ensure that
the clause€, C, ...,C, all use the same names; the scopes of these names are otherwise
irrelevant in the logic. Were the definition to omit the outer restricted nagtbe process

new x; expectFoax)

would be judged safe (because this process does not match the pattBrinfire def-
inition). Conversely, were the definition to omit the intermediate restricted ngnths ~
process

expectBarn() | Ban):—Foo(X) | newy; Fod(y)

would be judged unsafe (because this process matches the patt€rinftire definition
whereas its subproceBar():—Foq(X) | newy; Fody) does not match the pattern 8f).

Given a procesP representing the legitimate participants making up a system, we want
to show that no opponent proce@scan induceP into an unsafe state, where some ex-
pectation is unjustified. An opponent is any process within our spi calculus, except it is
not allowed to include any expectations itself. (The opponent goal is to confuse the legiti-
mate participants about who is doing what.) As a technical convenience, we require every
type annotation in an opponent to be a certain typetype annotations do not affect the
operational semantics, so the uséJof does not limit opponent behaviour.

OPPONENTS ANDROBUST SAFETY:

A processO is anopponentif and only if it contains no expectations, and every Itype
annotation iJn.

A proces<P is robustly saféf and only if P | O is safe for all opponent®.
|

As a consequence of this definition, in every run of a robustly safe préciesgarallel
with some opponent, every expectation can be justified by statements activited in
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12 . C. Fournet and A. D. Gordon and S. Maffeis

For example, the proce$3 given earlier is robustly safe, because the statemerfs in
suffice to inferRepor{alice 42yeport43, and they persist in any interaction with an oppo-
nent. On the other hand, the proc&sis safe on its own, but is not robustly safe. Consider
the opponenput ¢ (bogusok). We have:

R | out c (bogusok) — P | out c (report420k) | expectReporfalice 42bogug

This is unsafe becausepor{alice 42 pogu$ is not derivable from the statements in process
P. We can secure the chanrodby using thenew operator to make it private. The process
newc; R is robustly safe; no opponent can inject a message on

4. A TYPE SYSTEM FOR VERIFYING AUTHORIZATION ASSERTIONS

We present a dependent type system for statically checking implementations of authoriza-
tion policies. Although we develop a type system, other styles of static analysis are likely
applicable to the problem of proving robust safety. Moreover, instead of or in combination
with a static analysis, an implementation may record the statements issued by a running
program within some distributed database so as to check expectations dynamically; our
implementation of Datalog in Section 6 is a step in this direction.

Our starting point is a type and effect system [Gordon and Jeffrey 2002b] for verifying
one-to-many correspondences, which itself builds on prior work on types for channel-based
communication in the pi calculus [Milner 1999; Pierce and Sangiorgi 1996] and types for
cryptographic primitives in the spi calculus [Abadi 1999]. Apart from the new support
for logical assertions, the current system features two improvements. First, a new rule
for parallel composition allows us to typecheck a safe process sutch espectL; the
analogous parallel composition cannot be typed in the original system. Second, effects
are merged into typing environments, leading to a much cleaner presentation, and to the
elimination of typing rules for effect subsumption.

4.1 Syntax of Types and Environments
We begin by defining the syntax and informal semantics of message types.

SYNTAX FOR TYPES:

I

T,U = type
Un public data
Ch(T) channel for messages of type
Key(T) secret key for plaintexts of type
(xT,U) dependent pair (scope »is U)
Ok(9) ok to assume the claus8s

T is generativgmay be freshly created) if and onlyTfis Un, Ch(U), or Key(U).

Notation: (x1:T1, ..., Xn: T, Tnt1) £ (X2:T1, ooy (X0 Thy Tnt1))
L 1

A message of typen is public data that may flow to or from the opponent; for example,
all ciphertexts are of typgn. A message of typ€h(T) is a name used as a secure channel
for messages of typ€. Similarly, a message of typ€ey(T) is a name used as a secret
key for encrypting and decrypting plaintexts of type A message of the dependent type
(x:T,U) is a pair(M,N) whereM is of typeT, andN is of typeU {M/x}. The type(x:T,U)
is a generalization of an ordinary product type. (Such dependent types are standard in
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intuitionistic type theory [Martin-bf 1984], where they are known astypes.) Finally,
the tokenok is the unique message of ty@k(S), provingSmay currently be inferred.

For example, the typ€h((x:Un,Ok(Reportalice, 42,x)))) can be assigned to in
processR, stating that is a channel for communicating paif§l, ok) whereM : Un and
ok : Ok(Reportalice, 42,M)). This example illustrates a common idiom, in which the
final component of a communicated tuple is@athat conveys facts about the previous
components. In this idiom, the tuple takes the fdivh, ..., (Mp,0K)...) and has the type
(X1:T1,. .., Xn:Tn, OK(S))...). The namesq, ..., X, can occur free in the claus&s so
that theok has typeOk(S{M1/x1} ...{Mn/X,}), and hence conveys the fa@&M;/x; }
...{Mn/*n}, which may refer to the componer, ..., M.

Thegenerative typedJn, Ch(U), orKey(U), are the types of freshly generated names.

A restrictionnew x:T; P generates the nameand is only well-typed if the typ& is gen-
erative.

Next, we define typing environments—Iists of name bindings and clauses—plus some
auxiliary functions. The functiomlom(—) sends an environment to the set of names to
which it assigns a type. The functi@my —) sends a process to an environment that col-
lects its top-level statements, with suitable name bindings for any top-level restrictions.
The functionclause$—) sends an environment to the program consisting of all the clauses
listed in the environment plus the clauses in top-l&@k(—) types.

SYNTAX FOR ENVIRONMENTS, AND FUNCTIONS: dom(E), en(P), clause$E)

I
E:= environment

(7] empty
E,xT x has typer
E.C Cis avalid clause

Notation:E(x) =T if E=E',xT,E”

E is generativaf and only if E = x1:Ts, ..., Xn: T, and each; is generative.
domE,C) =domE) domE,xT)=domE)U{x} dom@)=g

eny(P| Q)Y =enyP)*,en(Q)’  (where{X,y}nfn(P| Q) =)

ennewx T;P)»* =xT,en(P)* (where{X} Nfn(P) = 2)
en(!P)*=en(P)* en(C)?=C  en(P)? = & otherwise
Convention:enyP) = eny(P)* for some distinck such thaenyP)¥ is defined.
clause$E,C) = clause$E) U{C} clause$E,x:Ok(S)) = clause$E)US
clause$E, xT) = clause$E) if T #£ Ok(S) clause$o) =@

|

4.2  Judgments and Typing Rules

Our system consists of three judgments, defined by the following tables.
The judgmenk I ¢ means that the environmelgtis well-formed.

RULES FORENVIRONMENTS: EF ¢

I(Env @) (Envx) (EnvC)
Eto fn(T) CdomE) x¢domE) Eto fn(C)C domE)
gko E.xTFo E,Ctko
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The rules (Envw), (Env x), (Env C) ensure that each name occurring in a type or a
clause in an environment is itself assigned a type by the environment, and that each name
is assigned a type at most once.

The judgmenE - M : T means that in environmeft, the messag®! has typer .

RULES FORMESSAGESEFM: T

I(Msg X) (Msg Encrypt) (Msg Encrypt Un)
EFo xedomE) EFM:T ERN:Key(T) EFM:Un EFN:Un
EFx:E(X) EF{M}IN:Un EF{M}IN:Un

(Msg Pair) (Msg Pair Un)
EFM:T EFN:U{M/x} EFM:Un EFN:Un
EF(M,N): (xT,U) EF(M,N):Un
(Msg Ok) (Msg Ok Un)
ErFo fn(S) CdomE) clause$E)=C VCeS Eto
EF ok: Ok(9) EFok:Un

The rule (Msgx) assigns a name the type given it by the environment. The rule (Msg
Encrypt) assigns a ciphertext the typa, provided that the encryption key has a type
Key(T) and the plaintext has type. The rule (Msg Pair) assigns a pam,N) the type
(x:T,U), provided thaM has typeT andN has the typ&) {M /x} dependent oM. The rule
(Msg OK) populates a®k(S) type only if we can infer each clause in the Datalog program
Sfrom the clauses in the environmdht For example, using claugeof Section 2.3, if

E = aliceUn,42:Un, report42Un,
A, Refereéalice 42), Opinion(alice 42 report43

thenE I~ ok : Ok (Reportalice 42, report43).

As in previous systems [Gordon and Jeffrey 2003a; 2002b], we need the rules (Msg
Encrypt Un), (Msg Pair Un), and (Msg Ok Un) to assign to arbitrary messages known
to the opponent.

The judgment + P means that in environmeHt, the proces® is well-typed.

RULES FORPROCESSESE P
I
(Proc Nil)  (Proc Rep) (Proc Res)

EFo EFP E,xTHFP T generative
EFO E-IP EFnewxT;P
(Proc Par)
E,enf(Q) P E,enyP)FQ fn(P|Q) C domE)
EFP|Q
(Proc Expect) (Proc Fact)
E,Cko clause$E) =C E,Cko
E F expectC EFC
(Proc Decrypt) (Proc Input)
EFM:Un EFN:Key(T) E,yTHP EFM:Ch(T) ExTHP
E - decrypt M as{y:T}N;P EFin M(xT);P
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(Proc Decrypt Un) (Proc Input Un)
EFM:Un EFN:Un E,yyUnkP EFM:Un E,xUntk P
E - decrypt M as{y:Un}N;P EFin M(xUn);P
(Proc Match) (Proc Output)
EFM:(xT,U) EFN:T EyU{N/xX}FP EFM:Ch(T) EEN:T
E + matchM as(N,y:U{N/x});P E F out M(N)
(Proc Match Un) (Proc Output Un)
EFM:Un EFN:Un E,yyUnkP EFM:Un EFN:Un
E F match M as(N,y:Un); P E F out M(N)
(Proc Split) (Proc Split Un)
EFM:(xT,U) ExT,yUFP E-M:Un E,xUn,y.UnkP
E - split M as(x:T,y:U);P E | split M as(x:Un,y:Un); P

There are three rules of particular interest. (Proc Expect) alioypectC provided that
C is entailed in the current environment. (Proc Fact) allows any statement, provided its
names are in scope. (Proc Par) is the rule for parallel composition; it ai¢Ws provided
thatP andQ are well-typed given the top-level statementdp&ndP, respectively. For
example, by (Proc Parg - Foq() | expectFoq) follows from & - Foq() and Fod) +
expectFoq(), the two of which follow directly by (Proc Fact) and (Proc Expect).

The rules (Proc Nil), (Proc Rep), (Proc Res), (Proc Output), and (Proc Input) type the
core processes of the pi calculus, other than composition. These rules are much as in early
systems for the pi calculus [Pierce and Sangiorgi 1996]. The rule (Proc Input) relies on the
invariant that any message sent on a channel of Gpd ) has typeT, ensured by the rule
(Proc Output). Similarly, the rule (Proc Decrypt) for decryption relies on the invariant that
any plaintext encrypted with a key of tyfpéey(T) has typeT, ensured by the rule (Msg
Encrypt). The rules (Proc Split) and (Proc Match) are for destructing pairs.

The rules (Proc Output Un), (Proc Input Un), (Proc Decrypt Un), (Proc Match Un), and
(Proc Split Un) allow arbitrary opponent processes to be typed, assuming that all messages
occurring in such processes can be assignedittype; these rules are needed to establish
Lemma 2 below.

We have implemented a typechecker for this type system, with Datalog as its autho-
rization logic. It consists of procedures to check the judgméntsP andE+ M : T,
given their parameters as input. To apply the rules (Msg Ok) and (Proc Expect) we in-
voke a decision procedure for Datalog entailment. For some rules, type checking depends
on a procedure that, given an environmenénd a messagd, infers a typerl such that
EF M :T. With a more verbose syntax, in which eagk term is annotated with th8
from its typeOk(S), the set of all types assignable to a term would be computable. Indeed,
the three judgments of the type system would be decidable, although the time complexity
would be exponential, due to the presence of two alternative typing rules for many message
and process constructs. Instead, our typechecker follows the syntax of the paper, without
annotations orok terms, and our type inference procedure is incomplete, as it does not
apply (Msg Ok), so as to avoid guessing theSestill, this incompleteness seldom arises;
the type of arok term is usually determined by context, as in the common case when the
ok occurs as the component of a tuple whose type is determined by an encryption key or
a communication channel. Hence, although our typechecker is incomplete, it can check a
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wide range of programs, including all the examples in this paper. Like other typecheck-

ers for the spi calculus such as Cryptyc [Gordon and Jeffrey 2002a], our implementation

allows type annotations to be omitted from inputs or decryptions, as they can be inferred
from context, but requires type annotations on the names bound by restrictions. We do not
consider the general problem of inferring type annotations for all bound names, although
this is likely a prerequisite for the practical application of our system.

To the best of our knowledge, the type inference problem for systems of dependent
types for the spi calculus has not been addressed in the literature. Maffei [2006] develops
type systems for authentication properties in a spi calculus, using certain tags instead of
dependent types, and proposes a type and tag inference algorithm. Maffei's is the closest
work to the type inference problem for our system, but he does not consider dependent
types nor indeed authorization properties.

We have not considered implementing other authorization logics than Datalog. Decid-
ability of logical entailment is not essential, of course; typecheckers for undecidable or
potentially intractable type systems are widely used in practice.

4.3 Main Results

Our first theorem is that well-typed processes are safe; to prove it, we rely on a lemma that
both structural congruence and reduction preserve the process typing judgment.

LEMMA 1. IfE P and either P= P or P — P’ then E- P'.
THEOREM 2. If E - P and E is generative, then P is safe.

Our second theorem is that well-typed processes whose free names are public, that is,
of type Un, are robustly safe. It follows from the first via an auxiliary lemma that any
opponent process can be typed by assuming its free names are bfitype

LEMMA 2. Iffn(O) C {X} for opponent O the&Un - O.
THEOREM 3. If Un P then P is robustly safe.

For generic reasons, the converse of this theorem is false, that is, the type system is
incomplete. For example, we cannot type a process that contains an expectation of an
unstated fact, even if the expectation is unreachable and the process is in fact robustly safe.

We conclude this section by showing that our calculus can encode standard one-to-many
correspondence assertions. The idea of correspondences is that processes are annotated
with two kinds of labelled events: begin-events and end-events. The intent is that in each
run, for every end-event, there is a preceding begin-event with the same label.

For example, consider the (trivial) authorization lo¢i€, fn, |=), whereL € ¥ are the
labels used for the correspondence assertjeris,defined agL} |= L for eachL € ¢, and
fnis standard. In this setting, we can encode begin-events and end-events as follows.

beginL;P= L |P endL;P = expectL |P

Given this trivial authorization logic our type system essentially degenerates to previous
systems for authentication properties. For example, given this encoding and a minor ex-
tension to the type system (tagged union types), we can express and typecheck all of the
authentication protocols from one previous study [Gordon and Jeffrey 2002b], including
WMF and BAN Kerberos.
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The correspondences expressible by standard begin- and end-events are a special case
of the class of correspondences expressible in our calculus where the predicates in expec-
tations areextensionalthat is, given explicitly by facts. Hence, we refer to our generalized
correspondence assertions based on intensional predicatésrasonal correspondences
to differentiate them from standard (extensional) correspondences.

Finally, neither our operational semantics nor our type system handles one-to-one cor-
respondences, where each begin-event corresponds to at most one end-event.

5. APPLICATION: PROGRAMME COMMITTEE ACCESS CONTROL

We provide two spi calculus implementations for the Datalog policy with delegation in-
troduced in Section 2 (defining claus&sB, andC). In both implementations, the server
enables those three clauses as part of its policy, and also maintains a local database of
registered reviewers on a private chanmetb:

A | B| C|newpwdb: Ch(u:Un, Key(v:Un,id:Un,Ok(Delegatéu,v,id))),
Key(id:Un,reportUn,Ok(Opinion(u,id,repord)));

Hence, each message pwdb codes an entry in the reviewer database, and associates

the nameu of a reviewer with two keys used to authenticate her two potential actions:

delegating a review, and filing a report. The usage of these keys is detailed below.
Although we present our code in several fragments, these fragments should be read as

parts of a single process, whose typability and safety properties are summarized at the end

of the section. Hence, for instance, our policy and the local chgowéb are defined for

all processes displayed in this section.

5.1 Online Delegation, with Local State

Our first implementation assumes that the conference system is contacted whenever a ref-
eree decides to delegate her task. Hence, the system keeps track of expected reports using
another local database, each record noting a fact of the Refare¢U,ID). When a re-
port is received, the authenticated sender of the report is correlated with the principal that
appears in the corresponding record. When a delegation request is received, the corre-
sponding record is checked, then updated.

The following code defines the (abstract) behaviour of reviewyéris triggered when-
ever a message is sent oreateReviewerit has public channels providing controlled ac-
cess to all her privileged actions—essentially any action authenticated with one of her two
keys. For simplicity, we proceed without checking the legitimacy of requests, and we as-
sume thaw is not a PC member—otherwise, we would implement a third action for filing
PC member reports.

(Yin createReviewdv);
new kdv: Key(z:Un,id:Un,Ok(Delegatév,z,id)));
newkrv: Key(id:Un,reportUn,Ok(Opinion(v,id,repor)));
( (‘out pwdh(v,kdv,krv))
| (Yin sendreportonlingv,id,repor);
Opinion(v,id,repor) | out filerepor{v,{id,reportok }krv) )
| (in delegateonling=v,w,id);
Delegatév,w,id) | out filedelegatév,{w,id,ok}kdv) ))) |
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In the code triggered bgreateReviewemessages, we first generate two new Keisand
krv. The replicated output opwdb associates these keys with The replicated input on
sendreportonlinguards a process that files reports; in this process, the authenticated
encryption{id,reportok }krv protects the report and also carries a faptnion(v,id,repor)
stating its authenticity. The replicated input delegateonlinsimilarly guards a process
that filesv’s delegations.

Next, we give the corresponding code that receives these two kinds of requests at the
server. (We omit the code that selects reviewers and sends messagéseedb In the
code guarded byint filerepor{v,€), the decryption “provesOpinion(v,id,repor), whereas
the input onrefereedidproves” Referegv,id): when both operations succeed, these facts
and clause&\ jointly guarantee thaRepor{v,id,repor) is derivable. Conversely, our type
system would catch errors such as forgetting to correlate the paper or the reviewer name
(for instance, writing #,id instead of w,=id in refereedl, leaking the decryption key, or
using the wrong key.

The process guarded bin'filedelegatév,sigd) is similar, except that it uses the fact
Delegatév,w,id) granted by decrypting under kegdv to transformRefereév,id) into
Refereéw,id), which is expected for typingk in the output orrefereedb

new refereedh Ch(u:Un,(id:Un,Ok(Refereéu,id)))); (tin
filerepor{v,e);
in pwdb(=v,kdv,krv); decrypt e as{id,report_}krv;
in refereedb=v,=id,_); expectReportv,id,repor)) |
(in filedelegatév,sigo);
in pwdb(=v,kdv,krv); decrypt sigdas {w,id,_}kdv;
in refereedf=v,=id,_); out refereedfw,id,ok)) |

The code for processing PC member reports is similar but simpler:

new kp:Key(u:Un,Ok(PCMembefu)));
(tin createPCMembéu,pc);PCMembefu) | out po({(u,0k) }kp) ) |
(Yin filepcreporfv,e,pctoken);

in pwdb(=v,kdv,krv); decrypt e as{id,report_}krv;

decrypt pctokenas {=v,_}kp; expectRepor{v,id,repor) ) |

Instead of maintaining a database of PC members, we (arbitrarily) use capabilities, con-
sisting of the name of the PC member encrypted under a new privatiepkeVhe code
implements two services as replicated inputs, to register a new PC member and to process
a PC member report. The faGtpinion(v,id,repor) is obtained as above. Although the
capability sent back on channgt has typeUn, its successful decryption yields the fact
PCMembegfv) and thus enableRepor{v,id,repor) by clauseB.

5.2 Offline Delegation, with Certificate Chains

Our second implementation relies instead on explicit chains of delegation certificates. It
does not require that the conference system be contacted when delegation occurs; on the
other hand, the system may have to check a list of certificates before accepting an incoming
report. Moreover, we rely on self-authenticated capabilities undek&éyr representing
initial refereeing requests, instead of messages on the private database obi@neetib

The idea is that, when a refergdiles a report for papeid, she also presents a dele-
gation chain showing she is authorized to file the report. In the implementation, we let a

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



A Type Discipline for Authorization Policies : 19

delegation chain provingrefereév,id) be a message in one of two forms:

—either an authenticated encryptifwnid,ok }kawherekais the key used by the PC chair
to appoint referees directly, implyirigefereév,id);

—or a tuple {,{v,id,ok}kdtct), wheret is a principal with delegation keldt, so that
{v,id,ok}kdt provesDelegatét,v,id), andct is a (shorter) delegation chain proving the
fact Referegt,id).

Given clauseC governing delegation, an easy bottom-up argument establishes that the
existence of such a delegation chain does indeed fRefereév,id). The following code
for accepting and checking a delegation chain supports this inductive argument.

( Delegat¢U,W,ID):—Delegat¢U,V,ID),DelegatéV,W,ID) ) |
( Delegat¢U,U,ID):—OpinionU,ID,R) ) |
new ka:Key((u:Un,(id:Un,Ok(Refereéu,id)))));
(Yin filedelegaterepoft,e,cv);
in pwdb(=v,kdv,krv); decrypt e as{id,report_}krv;
new link:Ch(u:Un,c:Un,Ok(Delegatéu,v,id))); out link(v,cv,0k) |
lin link(u,cu,.);
( decrypt cuas{=u,=id,_}ka, expectReporfv,id,repor)) |
(tuple cuas(t,delegatiorct); in pwdb(=t,kdt,);
decrypt delegatioras {=u,=id,_}kdt; out link(t,ct,0k)) |

The two auxiliary clauses mak2elegatereflexive and transitive; these clauses give us
more freedom but they do not affect the outcome of our policy—one can check that these
two clauses are redundant in any derivatiofReport

The process guarded by the replicated input on chafiledkelegatereporallocates a
private channelink and uses that channel recursively to verify, one certificate at a time,
that the message filed with the report is indeed a delegation chain provRejereév,id).

The process guarded lipk has two cases: the base cadedfypt cu) verifies an initial
refereeing request and finally accepts the report as valid; the recursivetepksec(l)
verifies a delegation step then continues on the rest of the ctéinThe type assigned
to link precisely states our loop invarianDelegatéu,v,id) proves that there is a valid
delegation chain from (the current delegator) down to(the report writer) for papead.

PROPOSITION 3. Let By, assign typén to createReviewecreatePCMembesendre
portonling delegaeonling, filereport filedelegatefilepcreport filedelegatereportand any
other name in its domain.

Let Bp assign the types displayed aboveptedh refereedbkp, andka.

Let P be a process such thag g Ep - P.

Let Q be the process comprising all process fragments in this section followed by P.

We have Bn - Q, and hence Q is robustly safe.

This proposition is proved by typin@ then applying Theorem 3. In its statement, the
procesd has access to the private keys and channels collectgg this process accounts

for any trusted parts of the server left undefined, including for instance code that assigns
papers to reviewers by issuing facts Rafereeand using them to populatefereedkand
generate valid certificates under Key We may simply také® = 0, or let P introduce its

own policy extensions, as long as it complies with the typing environntg@mpandEp.
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In addition, the context (implicitly) enclosin@ in our statement of robust safety ac-
counts for any untrusted part of the system, including the opponent, but also additional code
for the reviewers interacting witf (and possiblyP) using the names collectedt,, and
in particular the free names . Hence, the context may impersonate referees, intercept
messages on free channels, then send on chéitedglegatereporany term computed
from intercepted messages. The proposition confirms that minimal typing assumptions on
P suffice to guarantee the robust safetyof

6. APPLICATION: A DEFAULT IMPLEMENTATION FOR DATALOG

In this section, we describe a translation from Datalog programs to the spi calculus. To
each predicate and arityn, we associate a fresh narpgwith a channel typdp, . Unless

the predicatep occurs with different arities, we omit indexes and write jpsind T, for

pn andTp . Relying on some preliminary renaming, we also reserve a set of nanfes
Datalog variables. The translation is given below.

TRANSLATION FROM DATALOG TO THE SPI CALCULUS: []
I
Ton = Ch(xz:Un,...,X:Un, Ok (p(X1,...,%n)))

[Sl=MceslC]  [=] =0

L — L1, Ll =L, .. La]®[[L]] form>0

[p(uy,.. )]] = out pp(ug,...,Un,0kK)

[l Lo, o Ll P[] = [La® | [Lz .. L PO [']} [e]*[] =]
[[p(U]_, B Un)]] H =in pn(Q]_, <oy Up, :Ok); H

wherey; is u; whenu; & (7'\ (ZUfv(uj<i))) andy; is =u; otherwise.
P L whendP'.P —X P | [L]*
|

The procesgS] represents the whole prograg The procesgL:—Ly,...,Ly] is a
replicated process representing the clauseL;,...,Lm. The proces§L]" is an output
representing the conclusidnof a clause. The conteftq,Lo,...,Lm]%[-], where[] is a
hole to be filled with a process, represents the body of a clause. Finally, the prétligate
holds if the procesP eventually produces an output representing thelfact

For example, using the policy of Section 2, the translation of predRefortuses a
channelReportof type Treport = Ch(U:Un,ID:Un,R:Un, Ok (Repor{U,ID,R))) and the
translation of clausé yields the process

[ReporfU,ID,R):—Refere¢U,ID),OpinionU,ID,R)] =
lin Refere¢U,ID,=0k); in Opinion(=U,=ID,R,=0k); out Repor{U,ID,R,0k)

The next lemma states that a Datalog program, considered as a policy, is well typed
when placed in parallel with its own translation.

LEMMA 3. Let S be a Datalog program using predica@sand nameg with fn(S) C
{y}. Let E=y:Un, PriTnp p- We have E- S| [§].

More precisely, the lemma also shows that our translation is compositional: one can trans-
late some part of a logical policy, develop some specific protocols that comply with some

other part of the policy, then put the two implementations in parallel and rely on messages
on channel$, to safely exchange facts concerning shared predicates.
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Lemma 3 establishes that our translation is correct by typing. The following theorem
also states that the translation is complete: any fact that logically follows from the Datalog
program can be observed in the pi calculus.

THEOREM 4. Let S be a Datalog program and F a fact:=SF if and only if [F] .

To illustrate our translation, we sketch an alternative implementation of our conference
management server. Instead of coding the recursive processing of messages sent by sub-
referees, as in Section 5, we set up a replicated input for each kind of certificate, with code
to check the certificate and send a message on a channel of the translation. Independently,
when a fact is expected, we simply read it on a channel of the translation. For instance, to
process incoming reports, we may use the code

lin trivial filerepor(v,id,repord;
in Repor{=v,=id,=report=0k); expectRepor{v,id,repor)

The translation of clausA sends a matching message Raport provided the system

sends matching messages@pinionandReferee This approach is correct and complete,

but also non-deterministic and very inefficient. As a refinement, since any (well-typed)
program can access the channels of the translation, one may use the translation as a default
implementation for some clauses and provide optimized code for others.

7. CONCLUSIONS AND FUTURE WORK

We presented a spi calculus with embedded authorization policies, a type system that can
statically check conformance to a policy (even in the presence of active attackers), and a
series of applications coded using a prototype implementation.

Initself, our type system does not “solve” authorization: the security of a well-typed pro-
gram still relies on a careful (manual) review of the policy, on the discriminating statement
of trusted facts (or even rules) in the program, and on the presence of expectations marking
sensitive actions—indeed, in our setting, every program is safe for a sufficiently permis-
sive policy. Nonetheless, our type system statically enforces a discipline prescribed by
the policy across the program, as it uses channels and cryptographic primitives to process
messages, and can facilitate code reviews.

As it stands, our calculus and type system are simple and illustrative, but have many
limitations that may be investigated. For example, we do not consider revocation or tempo-
rary activation of authorization statements. From a logical viewpoint, many authorization
languages include notions of locality and partial trust, considering for example facts and
clauses relative to each principal [Abadi et al. 1993]. A first step will be to consider a com-
bination of the present system with ideas from a recent work [Gordon and Jeffrey 2005]
on a type system for checking secrecy in a pi calculus despite the compromise of some
principals. We are also exploring extensions of our type system to support, for instance,
some subtyping, public-key cryptographic primitives, and linearity properties. More ex-
perimentally, we plan to extend our typechecker and symbolic interpreter, and to study
their integration with other proof techniques.
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A. DATALOG PROOFS
This section develops proofs of Theorem 1 and Propositions 1 and 2.

LEmMMA 4. If SE=F then SU{C} = F.

PrROOF By induction on the depth of the derivation tree ®=F. [
LEMMA 5. If SEF and SU{F} = F'then S=F'.

PROOF By induction on the derivation 8U{F} =F'. O

LEMMA 6. If S|=F ando replaces names with messages, therSFo.
PROOF By induction on the depth of the derivation tree ®=F. [

RESTATEMENT OF THEOREM 1. For all clauses C and sets of clauses S, (1) and (2)
are equivalent:

(1) Forall sets of facts S{F | SU{C} F} C{F |SUSEF};
(2) SU{Li0,...,Lno} = Lo, where C=L:—Ly,....L, ando = {X/X} is an injective
substitution such thafx} N (fn(S)Ufn(C)) = @ andX = fv(Ly,...,Ln).
PROOF That (2) implies (1) follows by induction on the structureSf The inductive

case uses a nested induction on the derivationis,oind Lemmas 4, 5, and 6. That (1)
implies (2) is by definition of (Infer Fact).

The next two lemmas prove monotonicity and closure under substitutions of Datalog,
which are the properties (Mon) and (Subst) needed to show that it is an authorization logic.
RESTATEMENT OF PROPOSITIONL. If SE=C then $J{C'} =C.

PROOF By cases on the last rule used in the derivatio§ pf C, using Lemma 4. (I

RESTATEMENT OF PROPOSITION2. If S|=C ando sends names to messages, S
Co.

PROOFR By cases on the last rule used in the derivatioséf C, using Lemma 6 and
standard properties of substitutions.]

The following is a strengthening property of authorization logics with respect to sets of
clauses equivalent up to fresh renamings. It will be used in the proofs of Appendix B.2.

LEMMA 7. Let(%,fn, =) be an authorization logic, and let€ %, SS C %. If SU
S{y/x} US = C where{y} Nnfn(SUS U{C}) = @ and they are distinct, then §S = C.

PrRooOFE Follows from the property (Subst) of an authorization logic and from standard
properties of injective substitutions of fresh names]

B. SPI CALCULUS PROOFS

This section has three parts. Appendix B.1 contains the definition of an alternative, more

explicit, type system for the spi calculus and the proof that it is equivalent to the one

given in the main body of the paper. Appendix B.2 shows the main properties of the type

system—subject congruence and subject reduction, in particular. Appendix B.3 contains

the proofs of opponent typability and of the main results of the paper concerning safety.
All the results in this section are independent of the choice of authorization logics.
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B.1 An Alternative Type System

We define a type system for the spi calculus that gsesanteeso represent the top level,
active statements from processes while maintaining invariance under renaming of bound
names. It is informative to capture these guarantees explicitly with typing rules, rather
than to capture them implicitly via the separate functon(P) as used in the system in

the main body of the paper. We show the equivalence of the two type systems, and induce
soundness of the main system from proofs about the alternative system. Still, we expect
that a direct proof of soundness for the main system would proceed similarly to the proof
for the alternative system.

GUARANTEES:
I 1
G,H = guarantee

0 no guarantee

G|H composition

newx.T;G restriction

C clauseC can be assumed

The functioneny —) defined below, which given a guarantee extracts the corresponding
environment, is analogous to the one given in Section 4 for processes.

FROM GUARANTEES TOENVIRONMENTS: enyG)

en0)?=2  enVC)? =C

env(G | H)®Y =enyG)X,en\H)Y (where{X,y} Nfn(G|H) = @)
en(newx T; G = xT,en(G)X (where{X} Nfn(G) = @)

Convention:enyG) S enyG)* for some distinck such thaenyG)X is defined.
|

Guarantee subsumption is a binary relation on guarantees characterized by the axioms
(G Sub Idem) and (G Sub Order).®&C H then intuitivelyG contains fewer facts that.
Structural congruence for guarantees is defined in terms of subsumption.

GUARANTEE SUBSUMPTION: GC H

I

GCG (G Sub Refl)

GCHHCG=GCG (G Sub Trans)

GLCH=newxT;GCnewxT;H (G Sub Res)

GCG=G|HCG|H (G Sub Par)

G|0CG (G Sub Par Zero)

G|HCH|G (G Sub Par Comm)

(GIG)|HEG]|(G'|H) (G Sub Par Assoc)

G|GLCG (G Sub Idem)

GCG|H (G Sub Order)

newxT;(G|H)C G|newxT;H (G Sub Res ParlL) (fax ¢ fn(G))

G| newxT;HC newxT;(G|H) (G Sub Res ParR) (foc¢ fn(G))

newxp: Ti;newxo:To; G C (G Sub Res Res)
newxs:To;newx;:T1; G (for xq1 # X2, X1 ¢ fn(T2), %2 & fn(T1))
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STRUCTURAL CONGRUENCE FORGUARANTEES. G=H

I
G=H2GCHandHLCG (G Struct)
L

Below we give the rules defining the type system with guarantees. The rules (ProcG
Res), (ProcG Par), and (ProcG Fact) grow the guarantee of a process, (ProcG Rep) leaves
it invariant, and all the other rules set it@

ADDITIONAL JUDGMENT:

I
EFP:G good proces® guaranteeings
|

GOOD PROCESSESEF P : G (IN ENVIRONMENT E, PROCESSP GRANTS G).

I
(ProcG Nil)  (ProcG Rep) (ProcG Res)
EFo EFP:G E,xTHP:G Tgenerative

EFO0:0 EFIP:G EFnewxT;P:newxT;G

(ProcG Par)
E,en(G2)FP:G1 E,en(G1)FQ:G, fn(P|Q) C domE)
EFP|Q:G1| Gy

(ProcG Input) (ProcG Input Un)
EFM:Ch(T) EXTEP:G EFM:Un E,xUnkP:G
Erin M(xT);P:0 EFin M(xUn);P:0
(ProcG Output) (ProcG Output Un)
EFM:Ch(T) EFN:T EFM:Un EFN:Un
EroutM(N):0 EFoutM(N):0

(ProcG Decrypt)
EFM:Un EFN:Key(T) E,yTFP:G

E+decrypt M as{y:T}N;P: 0
(ProcG Decrypt Un)
EFM:Un EFN:Un EyUnkP:G
E I decrypt M as{y:Un}N;P: 0
(ProcG Match)
EFM:(xT,U) EFN:T EyU{N/x}FP:G
E F matchM as(N,y:U{N/x});P:0
(ProcG Match Un)
EFM:Un EFN:Un EyUnkP:G
E - match M as(N,y:Un);P: 0

(ProcG Split) (ProcG Split Un)
EFM:(xT,U) ExT,yUFP:G E-FM:Un E,xUny.UnkP:G
E split M as(xT,y:.U);P:0 E I split M as(x:Un,y:Un);P: 0
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(ProcG Query) (ProcG Fact)
E,.Cko¢ clause$E) =C E,Ctko
E - expectC: 0 E-C:C

GENERIC JUDGMENT: /
I

Fi=o|M:T|P:G meta-syntax for the generic judgment
fnle)=2 MM:T)=MM)Ufn(T) fn(P:G)="Mm(P)ufn(G)
oc=¢0 (M:T)c=Mo:To (P:G)oc=Po:Go

We can show now that the two type systems are equivalent.

LEMMA 8. EF P and enyP)* = E’ if and only if E- P : G, for some G such that
E' =enyG)~.

PROOF (=-) By induction on the derivation df - P and by definition oenyG). (<)
By induction on the derivation d& - P : G and by definition oenyP). O

B.2 Properties of the Type System

We proceed to show the main properties of the type system, in particular subject congru-
ence and subject reduction, which together give type preservation (Lemma 1).

Before proving subject congruence and subject reduction in detail, we state without
proof a series of fairly standard technical properties of the type system. The companion
technical report [Fournet et al. 2005a] describes the proofs of all of these properties.

LEMMA 9. IfFEFX:T and E-x:U then T=U.
LEMMA 10. fEFP:GandEFP:G then G=G'.

LEMMA 11. Let ¢ range ove{o,M: T,P:G}. (i) IfE,xU,E'+ ¢ and U is gener-
ative and xZ fn(_#)Ufn(E’) thenEE'F 7. (ii) IfE,C,E' - othen EE' F- <.

LEMMA 12. IfEq,Ep,E3,EqF j and dOﬂﬁEz) ﬂfl’l(Eg) =@ and fr(Ez) ﬂdOlT(E3) =
@ then B,Ez, E3, E4 /

LEMMA 13. (i) If G E G then fr(G) C fn(G). (ii) If G = G then f(G) = fn(G).
LEMMA 14. If E,en(G)X,E’' - # and GLC G/, in(G) = fn(G') and {X} N (fn(E’) U

fn(_7))=o,thenEenG' )% E' - 7 and{Z} N (fn(E")ufn( 7)) = 2.
LEMMA 15. IfE,en(G)X E'P: G and{X} N (fn(P)Ufn(E’)) = @ then EE' - P: G.

LEMMA 16. () IfE,E'+ ¢ and fn(C) C dom(E) then EC,E'+ ¢. (i) fE ,E'+ 7,
fn(T) € dom(E) and x¢Z domE,E’), then ExT,E' - 7.

LEMMA 17. IfE1,xT,EoF Zand B FM:T then B,Ex{M/x} - _#{M/x}.

LEMMA 18. If E - P: G and P= P’ then there exists a’'Guch that B- P : G’ and
G=G.

PrROOFR By induction on the derivation d® = P’ we show:
(1) fE-P:GthenE-P : G,
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(2 fEFP :G thenE-P:G.
We show only the more interesting cases.

(Struct Par). Supposéd® | Q=P | Q.

By hypothesisP = P'.

By hypothesis of (1)EFP | Q: G.

By (ProcG Par)E,en(G,)Y - P: G; andE,eny Gy )X+ Q: G, andfn(P | Q) C dom(E)
whereG = Gy | Gy.

By inductive hypothesiss,enG,)Y - P’ : G} = Gy.

By Lemma 13fn(G1) = fn(Gj).

By Lemma 14E en(G,)* - Q: Gy.

By (ProcG Par)E+ P | Q: G] | Go.

By definition of= by (G Sub Par)G = G] | G,.

The proof for (2) is symmetric.

(Struct Par Assoc)SupposeéP | Q) |R=P | (Q|R).

By hypothesis of (1)EF (P| Q) | R: G.

By (ProcG Par)E,en(G)?+ P | Q: Gy andE,enGy) - R: Gy, in((P| Q) | R) C
domE), andG = Gy | Gy.

By (ProcG Par)E,en(G;)%, en(Gy)Y - P : Gz and E,enG;)%,enVG3)* - Q : Gy,
fn(P | Q) C domE,enyGy)), andG; = Gz | Ga.

By Lemma 12E,en(Gy)Y,en(G)? - P : Gz andE, enV(Gs)*,enV(G)? - Q: Gy.

By (ProcG Par)E,enVGs)*F Q| R: G4 | Gy.

By (ProcG PanE-P| (Q|R): Gz | (Ga| Gy).

By (G Sub Par Assoclz = (G3 | Gy) | G2 =Gz | (G4 | Gy).

The proof for (2) is similar.

(Struct Repl Unfold).SupposeP =P | IP.

By hypothesis of (1)E P : G.

By (ProcG Rep)E+ P: G.

By Lemma 16 E,enG) - !P: GandE,enG) - P: G.

By (ProcG PanEFP|!P:G|G.

By (G Sub Idem)G | G=G.

By hypothesis of 2)E-P|!P: G.

By (ProcG Par)E,en(Gy) F P: G; andE,en(Gs) P : Gy, whereG = Gy | Gy.

By (ProcG Rep)E,enGy) - P: Gy.

By Lemma 10G; = Gy.

By Lemma 15E FIP: Gy.

By (G Sub Idem)G = Go.

(Struct Res Par).Supposeewx:T; (P | Q) =P | newxT; Q.

By hypothesisx ¢ fn(P).

By hypothesis of (1)E - newx.T; (P | Q) : G.

By (ProcG Res)E,xT P | Q: G whereG = newxT;G.

By (ProcG ParnE,x.T,enGy)Y - P: Gy andE, x.T,enG1)*F Q: G, whereG' = Gy |
Go.

By (ProcG Res)E,eny(G1)* - newx.T;Q: G,.

Sincex ¢ fn(P), by Lemma 11E,en(G)Y - P: Gy.

By (ProcG Par)E F P | newx:T; Q.

The proof for (2) is similar, using Lemma 16 instead of Lemma 11.
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(Struct Res Res)Supposaew x;1:Ty;newxo:To; P = new Xo: To; new x; . Ty ; P.
By hypothesisx; # X, x1 ¢ fn(T2), %2 ¢ fn(T1).

By (ProcG Res)E,x1:T1 - newxo:To; P : G.

By (ProcG Res)E, x1:T1,x:To HP: G.

Sincexy # X2,X1 ¢ fn(T2), %2 ¢ fn(T1), by Lemma 12E, xo:To, x1:Ta F P : G.
By two applications of (ProcG Red}, - newxo:To; ,newxy:T1; P : G.

The proof for (2) is symmetric. ]

LEMMA 19. If E - P: G and P— P’ then there exists a'Guch that B- P’ : G’ and
GLCG.

PrRoOOF The proof is by induction on the derivation Bf— P'.

(Red Comm).Supposeut a(M) | in a(x:T); P — P{M/x}.

By hypothesis of the lemm& - out a(M) | in a(x:T);P: G.

By (ProcG Par)E + out a(M) : 0andE I~ in a(x:T);P: 0, andG = 0| 0 because the
only rules applicable to the premises are (ProcG Output) or (ProcG Output Un) for the first
sub-term, and (ProcG Input) or (ProcG Input Un) for the second.

We distinguish two cases.

—If E+ out a(M) : 0 is derived by (ProcG Output) thebt a: Ch(U) andE+- M : U,
and by Lemma 9E I in a(x:T);P: 0 is derived by (ProcG Input), an@l = U and
E,xU I P:G for someG.

By Lemma 17E + P{M/x} : G'{M/x}.

—If EF out a(M) : Ois derived by (ProcG Output Un) théht a: Un andE - M : Un,
and by Lemma 9E +in a(x:T);P: 0is derived by (ProcG Input Un), arld= Un and
E,xUnk P:G for someG'.

By Lemma 17E,x:Un+ P{M/x} : G'{M/x}.

(Red Decrypt).Supposealecrypt {M}k as{y:T }k;P — P{M/y}.

If E+ decrypt {M}k as{y:T}k;P: G is derived by (ProcG Decrypt) th&€d =0, E -
M:T,Erk:Key(T),andE,y:THP:G.

By Lemma 17E - P{M/y} : G'{M/y}.

The case for rule (ProcG Decrypt Un) is similar.

(Red Split). Supposesplit (M,N) as(x:T,y:U); P — P{M/x}{N/y}.

If EF split (M,N) as (xT,y:U);P: G is derived by (ProcG Split) the® =0, E -
(M,N): (xT,U) andE,xT,yUFP:G.

By (Msg Pair)EFM : T andE - N:U{M/x}.

By Lemma 17E,y:U{M/x} - P{M/x} : G'{M/x}.

By Lemma 17E + P{M/x}{N/y} : G'{M/x}{N/y}.

The case for rule (ProcG Split Un) is similar.

(Red Match).Supposenatch (M,N) as(M,y:U); P — P{N/y}.

If EF+ match (M,N) as(M,y:U);P: G is derived by (ProcG Match) the@ =0, E -
(M;N): (xT,U),EFM:T andE,yU{M/x} FP:G.

By (Msg Pair),E+ N :U{M/x}.

By Lemma 17E - P{N/y} : G'{N/y}.

The case for rule (ProcG Match Un) is similar.

(Red Par). Supposé® | Q — P | Q.

By hypothesisP — P'.
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By hypothesis of the lemmé& - P | Q: G. By (ProcG Par)E,en(Gy) - P: Gy,
E,en(G1) - Q: Gy, fn(P | Q) C domE), andG = G; | Gy.

By inductive hypothesi€,enG;) + P' : G, for someG’ such thaG; C G'.

By Lemma 16E,en(G') - Q: Gy.

By (ProcG Par)E-P|Q: G | Gy.

By definition of (GSubPaj, G; | G, C G’ | G,.

(Red Res)Suppossewx:T;P — newxT;P'.

By hypothesisP — P'.

By hypothesis of the lemm& - newx.T;P: G.

By (ProcG Res)E,xT +P:G andG = newxT;G.

By inductive hypothesi€, x.T P : G’ andG C G".

By (ProcG Res)E - newx:T;P :newx.T;G".

By (G Sub Res)(xT)G' C (xT)G".

(Red Struct).Suppose® — P'.

By hypothesisP=Q,Q - Q,Q' =P

ByLemma 18 orEHP: G, EtF Q: Gy whereG; =G.

By inductive hypothesis oR - Q: G, EF Q : G, andG; C Gy.

By Lemma 18E - P : G3 = G,.

By definition of= and by (G Sub Transi; C G3. [

RESTATEMENT OF LEMMA 1. If E - P and either P= P’ or P — P’ then E- P'.
PrROOF By definition ofE - P and Lemmas 18 and 1907

B.3 Type Safety

We describe the proofs of opponent typability and of the main results of the paper concern-
ing safety.

B.3.1 Properties of the Opponenihe following two lemmas are proved by easy in-
ductions.

LEMMA 20. For any M, if fnfM) = {X} thenX:UnF M : Un.

LEMMA 21. For any opponent Pz:Un - P : G, where fiiP) C {X}.
RESTATEMENT OF LEMMA 2. For any opponent PXUn F P, where fiiP) C {X}.
PrRoOF Follows directly from Lemma 21 and Lemma 80

B.3.2 Safety and Robust Safety

LEMMA 22. If E - P: G and clause@nG)*) = {Cy,...,Cn} then there exists a'P
such that P= newX.T;(Cy| ... |Cy| P).

PROOFE By induction on the derivation dt - P : G.

(ProcG Fact). Supposée - C : C.

Proces$® = P’ = Cis in the required form.

(ProcG Res).Supposé& - newx:.T;P: newx:T;G.

By hypothesisg,xTFP: G.

By inductive hypothesis? = newX.T;(Cy | ... | Cy | P') where
clausesenyG)X) = {Cy,...,Cy}.
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By (Struct Res)newx.T;P=newx.T,XT;(Cy|...|Cn|P).

By definition, clause¢ennew x.T; G)*X) = {Cy,...,Cn}.

(ProcG Rep).Supposé& F 1P : G.

By hypothesisE - P : G.

By inductive hypothesisP = new XT;(Cy | ... | Cn | P') whereclausesenyG)¥) =
{C4,...,Cq}.

By (Struct Repl) and (Struct Res Par),
IP=newXT;(Cy|...|Cq|P)|!P=newXT;(Cy|...|Cqn| (P |!P)).

(ProcG Par). Suppos€ - P | Q: G | Gy.

By hypothesisk,en\G) - P: G, E,en(Gy) - Q: Ga.

By inductive hypothese® = newX.T;(Cy | ... | Cn | P') where
clausesen(G1)*) = {Cy,...,Cqh} andQ = newy:U; (C; | ... | G, | Q') where
clausegenvG)Y) = {C;,...,Ch}.

By a-conversion and commutativity,
P|Q=newxT,yU;(Cy|...|Ch|C|...|CL|(P'| Q).

By definition,clause¢enyG; | G2)*Y) = {Cq,...,Cy,Cy,...,CL}

All the other cases are trivial, &= 0, clausesen0)?) = @, andP=P'. 0O
RESTATEMENT OF THEOREM 2. If E - P and E is generative then P is safe.

PROOF We need to show that whenewr—~ new%:T; (expectC | P'), we can refactor
P’ so that”’ = newy:U; (Ci|...]Cq | P"),and{Cy,...,Cq} E=C, with {y} Nfn(C) = @.
By hypothesiskg F P.
By Lemma 19 and Lemma 18, —~ new%:T; (expectC | P') then
E - newX:T; (expectC | P') : G, for someG.
This must follow from repeatedly applying (ProcG Res) from the premise
E,)?:'I: + expectC | P’ : G1, whereG = newxT; G;.
This must follow from (ProcG Par) and (ProcG Query), from the premises
(i) E,xT,enGy)Y - expectC : @ and
(i) E,xT - P’ : Gy, wherefn(expectC) = fn(C) C domE) and
clause$E,x.T,en(Gy)Y) = C, and{y} Nfn(C) = @.
Assume, without loss of generality, theauseg¢enyG;)Y) = {Cy,...,Cn}.
By generativity ofE and by definition{C;,...,Cy} =C.
By Lemma 22 on (i)P’ = newy:U; (Cy | ... |Gy | P"). O

RESTATEMENT OF THEOREM 3. If XUnF P then P is robustly safe.

PrOOF Consider an arbitrary oppone®dt and let{Z} = fn(O) U {X}.
By hypothesiscUn P : G, for someG.
By Lemma21ZUnt+ O: G, for someG'.
By Lemma 16ZUn,en(G) - O: G andZUn,en(G') - P: G.
By (ProcG Par)ZUn+P|O:G|G.
By Theorem 2P | Ois safe. [

C. ENCODINGS FOR PATTERNS AND DATALOG

In this section we introduce the formal definition of syntactic sugar. We show that a derived
typing rule is admissible. We then prove correctness and completeness of the implemen-
tation of Datalog. The results of this section assume that we are using Datalog as the
underlying authorization logic.
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C.1 Syntactic Sugar

The syntactic sugar for input and decryption consists in a straightforward translation into
the syntactic sugar for tuple matching. The definition of the latter is given by induction
on the length of the tuple, by cases depending on whether the first parameter is used for
binding or for matching.

SYNTACTIC SUGAR: INPUT, DECRYPTION AND PATTERN-MATCHING

in M(M);P = in M(y:Tyc(M));tuple y as (M); P (S Input)
(wherey ¢ fn(M) Ufn(P))

decrypt M as{N}N;P = decrypt M as{y: Ty, (N)}N;tuple y as (N); P (S Decrypt)
(wherey & fn(M) UTn(P))

tuple M as(z,@); P = split M as(zTy, (M),y:Tyg(M));tuple yas(M);P (S Split)
(wherey & fn(M) Ufn(P) U {z})

tuple M as(z); P = split (M,M) as(zTy(M),y:Ty(M)); P (S Split 0)
(wherey & fn(P) U {z})

tuple M as (=N, N); P = match M as (N, y:Tyg(M)); tuple y as (N); P (S Match)
(wherey & fn(M) UTn(P))

tuple M as(=N); P = match (M,M) as(N,y:Ty(M)); P (S Match 0)
(wherey ¢ fn(P))

When an environmertt is fixed, the macrdyc k /g (M) can be translated 6
if E+ M : T whereT’ is respectivelyl, Ch(T),Key(T), (x: T,U) or (x:U,T).
|

In the encoding of Datalog each predicate of antgorresponds to a channel of arity
n-+ 1 carrying a tuple of names of tygdn, together with arok token guaranteeing that
the predicate holds for all the communication parameters. To simplify the typing of the
encoding, we derive a dedicated typing rule for this very common case.

DERIVED TYPING RULE:

(ProcG Input Der)
EFp:Thp E,0:Un,y: Ok(p(us,...,un))FP:G
EFin p(uy,...,u,,=0k);P:0

wherel are theu; occurring as input patterng;Z fn(P).
| |

LEMMA 23. Rule (ProcG Input Der) is admissible.

ProoF We show that ifE - p: Tnp and E,G:LF],y: Ok(p(uz,...,un)) - P: G, then
EFin p(uq,...,u,,=0k);P:0.
By (S Input),in p(uy,...,u,,=0Kk);Pis translated as
in p(y:Ty(p));tuple yas(uy,...,u,,=0Kk);P.
By definition of encodingT, , = Ch(uz:Un, ..., us:Un,Ok(p(us,...,Un))).
We can conclude by (ProcG Input) if we can show that
E,y:(uz:Un, ... ;un:Un,Ok(p(u,...,un))) F tuple yas(uy,...,u,,=0k);P: 0.
We prove it by induction on the number of parameters left to piarse
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—(i = 0): We need to show th&t, y:Ok(p(uy,...,un)) - tuple y as(=ok);P: 0.
By (S Match 0) tuple y as (=ok); P = match (y,y) as(ok,y: Ty(y));P.
By hypothesisg,t:Un,y: Ok(p(u,...,un)) FP: G.
By (ProcG Match) and Lemma 16 we conclude.
—( = j+1): We need to show the,y:(up_i+1:Un,...,un:Un,Ok(p(us,...,un))) F
tuple y as (Un_j1,---,Uy, =0K);P: 0.
We split the proof in two cases, dependinguwn; ;.
—(Un_i11 = Un—i+1): By (S Split),tuple y as (U, i1, ..., Un, =0K);P =
split y as (Un—i+1: Ty, (Y), Y:TYr(Y)); tuple y as (Un—j+1. . ., Uy, =0K); P.
By definition, Tyg(y) = (Un—j+1:Un,...,un:Un, OK(p(uy,...,un))) and
Ty (y) =Un.
By (ProcG Split) and by the inductive hypothesis, we conclude.
—(Un_j41 = =Un—i11): similar to the previous case, using (S Match) and (ProcG Match)
instead of (S Split) and (ProcG Split)J

C.2 Correctness and Completeness

In this section we show that the encoding of Datalog is both correct and complete. It is
correct in the sense that if we can derive a fadh the encoding of a Datalog progra®

([9] V&), then the we can also derive it in the original progra8=(F). It is complete in

the sense that if we can derive a fact in Datal8¢=(F) then we can also derive it in the

encoding [T UF).

PREDICATES OF ADATALOG PROGRAM: predS)

Ipreo(@) =g pred{C}US)=predC)UpredS) predp(ui,...,un))={pn}
predLs,...,Ln) = Uier.nPredLi) predLlo:—L) = predLo)upredL)
Notation:L =L4,...,Ln

EXTRACTING BINDINGS FROM LITERALS: en\F(Ll,...,Ln)

I

en Va1 (L. Ly) = enF(Ly,..., Ln_1), en V) (L)
env(p(ug,...,Un)) = env¥(ug,...,un),y:0k(p(us,...,un))  (whereyis fresh

env(Uy,...,Un) = env(Ug,..., un,l),en\FUfV(Uiv"ﬂ“ﬂ—l)(un)
enF(X)=X:Unif X¢Z ent(X)=¢eif XcZ enF(M)=¢

The next two lemmas show that any process obtained by encoding a Datalog program,
in parallel with the clauses of the program itself is typable in an environment formed ac-
cording to the rules of the encoding.

LEMMA 24. Consideraclause &L:—Lm,...,L1, and letp, = predC) and fnC) C
{y}. Let E=¥y:Un, pn:Th p. We have ECH [C] : 0.

PROOF LetXy= @ andZj = ;1 Ufv(Lj;+1). By induction on the number of literais
that remain to be considered, we show that

E,L:—Lm,...,L1s,enV+ (L, ..., Lit1) F [Li,...,La]®[[L] F]: 0

—i=0:E,C,en’(Lp,...,L1) F [L]* : 0 easily follows from (ProcG Output) and (Infer
Fact).
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—i = j+1: We are to shov,C,enV+1(Lp,...,Li+1) - [Li,Lj,...,La 5 [[L]*] : O.
Suppose, without loss of generality, that= p(u,...,Un).
By definition of encoding,
[, L, La] 3 IL] ] =i puy, -y, =0K); L, .., La BUMED L] ).
By definition ofZj, ¥ = Z Ufv(L;).
By inductive hypothesis;,C,enV¥ (L, ..., L) - [Lj,...,La5 [[L] 1] : O.
By (ProcG Input Der),
E,C,enVFi+1(Lp,...,Lit1) Fin p(ug,...,un,=0K); [Lj,...,La]*I [[L] ] : O.

By definition of encoding and by (ProcG Rep) we concludel.

RESTATEMENT OF LEMMA 3. Let S be a Datalog program using predicatgs and
namesy with fn(S) C {y}. Let E=y:Un, pn:Ty p. We have E- S| [[S].

PROOFE By induction on the structure &

—(S= ©): We conclude withz I- 0.

—(S= S U{C}): By definition of encoding, we need to show th&at S | [S] | C | [C].
By inductive hypothesis and weakening, we h&v€ + S | [S].
By Lemma 24 and weakening, S,C+ [C] : 0.
By (ProcG Fact) and weakening,S +C: C.
By (ProcG Par)E,S+C|[C]:C.
By (ProcG Par) and weakening, we concludel

LEMMA 25. Let L= p(uy,...,uy) be a Datalog literal, leto, p be substitutions (with
disjoint domains) of messages for Datalog variables, ankl leg a set of Datalog variables
such that dorfo) = . Then,([L]*[P])o | [Lop]t —"*! Pop.

PROOFE By induction on the arityn of the predicategp and by definition of syntactic
sugar, following the structure of the proof of Lemma 28]

LEMMA 26. LetC=Lg:—L1,...,Ln be a Datalog clause, and let be a substitution
of messages for Datalog variables such that all the Are ground facts. There exists a

process P such thdC] | [Lio]* | ... | [Lno]t =% P| ([Lo]*)o.

PROOF By definition of encoding,
[C [ [Lao]* |- [ [Lac]™ = [C] | [La,-- . Ll ?[[Loll "] | [Lao]* | ... | [Lac]". We
show, by induction om, that ([Ly,...,La]%[[Lo]T])o | [Liop]™ | ... | [Lanop]t —=

[Lo] T op wheredom(c) = Z, which implies the thesis.

—(n=0): By hypothesisC is a ground fact.
By definition of encoding([e]*[C])o = ([C]*)o and we conclude, witp = .
—(n=m+ 1): Suppose, without loss of generality, that,1 = p(uy,...,up).
By definition of encodingLms1,L1,...,Lm]*[[Lo] 7] = Q where
Q=1in p(Uy, -, Uy, =0K); [L, .., L ZMLme) [[Lo] +).
By Lemma 25Qc | [Liop]* | ... | [Lmop]™ | [Lmrop] ™ —"
(L., L PNV Lo o | [Laop] | ... | [Lmop]*,
wheredom(p) = fv(Lm1).
By inductive hypothesis,
([t L PNV Lo o | [Lrop] | .. | [Lmop]t —
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The lemma below shows that an encoded program is not consumed by reductions.
LEMMA 27. If [S] —% P then there exists’Buch that P= [[J] | P'.

PrRoOOF By definition of encoding, structural congruence and reductian.

Finally, we can show correctness and completeness for the encoding.

RESTATEMENT OF THEOREM4. Let S be a Datalog program and F a fact. We have
SEFifand only if[S] Jr.

PROOF (=) By induction on the depth of the derivation tree 8i= F. The base
case is by definition of encoding and by definitionjof The inductive case follows by
Lemma 27, Lemma 26 and by definition {f

(<) By Lemma 3, there exists a generative environntestich thak - S| [S].
By definition of ||, IR[S] —~ P| [F]™.
By Lemma 1E S|P |[F] . By reasoning on the typing rules, sinfg] contains no
statements and the subtefif]* is well-typed, it must be the case tt&=F. O
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